9 Compléments sur les réels

Cahier de calcul : \emptyset . Banque CCINP : \emptyset .

Majorants, plus grand élément, borne supérieure

— Exercice 1 •○○○ — Montrer que toute suite décroissante d'entiers naturels est *stationnaire*, *i.e.* constante à partir d'un certain rang.

Exercice 2 ••••• Déterminer, si elles existent, les bornes supérieures et inférieures des parties de \mathbb{R} suivantes.

- **1.**]-5,2]. **2.** $\mathbb{R}_{+}^{*}.$ **3.** $]-7,-3] \cup]6,7].$ **4.** $\{3+4n \mid n \in \mathbb{N}\}.$
- **5.** $\left\{ \frac{1}{3n} \frac{2}{n^2} \mid n \in \mathbb{N}^* \right\}$. **6.** $\left\{ (1 + (-1)^n) e^n \mid n \in \mathbb{N} \right\}$. **7.** $\left\{ \sin \left(\frac{2k\pi}{7} \right) \mid k \in \mathbb{Z} \right\}$.

Exercice 3 ••••• Soit A et B deux parties non vides et bornées de \mathbb{R} , et a un réel positif. On considère les ensembles

$$-A = \{-x \mid x \in A\}, \quad aA = \{ax \mid x \in A\} \quad \text{et} \quad A + B = \{x + y \mid (x, y) \in A \times B\}.$$

- 1. Montrer que ces ensembles sont bornés.
- 2. Calculer leur borne inférieure et leur borne supérieure en fonction de a et des bornes inférieure et supérieure de A et B.

Exercice 4 •••• Soit A et B deux parties non vides de \mathbb{R} telles que $\forall a \in A, \forall b \in B, a \leq b.$

Montrer que A est majorée, B est minorée et $\sup A \leq \inf B$.

Exercice 5 •ooo Soit I un intervalle non vide et $f,g:I\longrightarrow\mathbb{R}$ deux fonctions majorées. Comparer $\sup_I f + \sup_I g$ et $\sup_I (f+g)$.

Exercice 6 •••• Montrer que la fonction f définie sur [0,1] par

$$f(x) = (1 - x)\sin\frac{\pi}{x}$$

est bornée. Atteint-elle ses bornes?

Exercice 7 •ooo **Exercice 7** •ooo **Exercice 7** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction majorée.

Pour tout $y \in \mathbb{R}$, on pose

$$f^{\star}(y) = \sup_{x \le y} f(x).$$

- **1.** Justifier que la fonction f^* est correctement définie.
- 2. Illustrer la définition de f^* par des figures rapides à main levée sur différents exemples de fonctions f.
- **3.** Déterminer f^* lorsque f est croissante sur \mathbb{R} .
- **4.** Étudier la monotonie de f^* .

— Exercice 8 •••○ **—** Périodes d'une fonction périodique

Soit $f \in \mathbb{R}^{\mathbb{R}}$ et \mathcal{T} l'ensemble des périodes de f. On pose $\alpha = \inf(\mathcal{T} \cap \mathbb{R}_+^*)$. Montrer que si $\alpha > 0$, alors $\alpha \in \mathcal{T}$.

Exercice 9 •••• Un théorème de point fixe Soit $f:[0,1] \longrightarrow [0,1]$ une fonction croissante. On veut montrer que f possède un point fixe.

- **1.** On pose $T = \{x \in [0,1] \mid f(x) \le x\}$.
 - **a.** Montrer que T possède une borne inférieure t.
 - **b.** Montrer que f(t) minore T.
 - **c.** Montrer que $f[T] \subset T$.
 - **d.** En déduire que f(t) = t.
- 2. Ce résultat subsiste-t-il pour une fonction croissante de [0,1[dans lui-même?

— Exercice 10 •••∘ **—** ♀ Distance à une partie

Soit A une partie non vide de \mathbb{R} .

- **1.** Pour tout $x \in \mathbb{R}$, justifier l'existence de $\inf\{|x-a| \mid a \in A\}$, appelé la distance de x à A et noté d(x,A).
- **2.** Calculer d(x, A), pour tout $x \in A$.
- **3.** Montrer que, pour tous $x, y \in \mathbb{R}$, $|d(x, A) d(y, A)| \le |x y|$.
- **4.** On pose $A = \mathbb{Q} \cap [0,1[$. Déterminer d(x,A), pour tout $x \in \mathbb{R}$, et tracer le graphe de la fonction $x \longmapsto d(x,A)$.

— Exercice 11 ••○○ — Longueur d'un intervalle

Pour toute partie A de \mathbb{R} non vide et bornée, on pose $\ell(A) = \sup\{|x-y| \mid (x,y) \in A^2\}$.

- **1.** Justifier que $\ell(A)$ est correctement défini.
- **2.** Pour tous $a, b \in \mathbb{R}$, avec a < b, montrer que

$$\ell([a,b]) = \ell([a,b[) = \ell(]a,b]) = \ell(]a,b[) = b - a.$$

Approximations des réels

Exercice 12 •••• Soit $\varepsilon > 0$ et A > 0.

Déterminer un rang, i.e. un entier, à partir duquel

1.
$$\frac{n}{n^2+1} < \varepsilon$$
. **2.** $\sqrt{n^2-n} > A$. **3.** $3^n - 2^n > A$. **4.** $\frac{2^n}{n} > A$.

- **1.** Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$.
 - **a.** Montrer que $\lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor = \lfloor 2x \rfloor$.
 - **b.** En déduire la valeur de $S_n = \sum_{k=0}^n \left| \frac{x+2^k}{2^{k+1}} \right|$.
 - **c.** En déduire que $S_n = |x|$ à partir d'un certain rang N, lorsque $x \ge 0$.
- **2.** $(\bullet \bullet \bullet)$ Montrer plus généralement que, pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}$,

$$\sum_{k=0}^{n-1} \left\lfloor x + \frac{k}{n} \right\rfloor = \lfloor nx \rfloor.$$

— Exercice 14 ••∘∘ — **У**

- 1. Soit $x \in \mathbb{R}$. Exprimer en fonction de |x|, en distinguant des cas, les quantités
- **a.** [2x]. **b.** [-x]. **c.** $\left| x + \frac{1}{4} \right|$.
- **2.** Montrer que, pour tous $x \in \mathbb{R}$ et $k \in \mathbb{N}^*$,
 - **a.** $\lfloor 2x \rfloor = \lfloor x \rfloor + \left\lfloor x + \frac{1}{2} \right\rfloor$. **b.** $\left\lfloor \frac{\lfloor kx \rfloor}{k} \right\rfloor = \lfloor x \rfloor$. **c.** $\lfloor x \rfloor + \lfloor 2x \rfloor + \lfloor 3x \rfloor \leqslant \lfloor 6x \rfloor$.

- **3.** Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$.
 - **a.** |2x| = |5-x|. **b.** $|3x| 2 = |x|^2$. **c.** |3x| = 2 |x|. **d.** $|2x| = |x|^2$.

— Exercice 15 •••∘ — ♀ Putnam 1948 Montrer l'assertion

$$\forall n \in \mathbb{N}, \quad \left| \sqrt{n} + \sqrt{n+1} \right| = \left| \sqrt{4n+2} \right|.$$

Exercice 16 •••• \mathcal{V} \mathcal{S} Existe-t-il un entier n tel que $30^{4^{1777}}$ et 2^n aient le même nombre de chiffres?

— Exercice 17 ••∘∘ —

Montrer que $\left\{\frac{p}{2^n} \mid p \in \mathbb{Z} \text{ et } n \in \mathbb{N}\right\}$ est une partie dense de \mathbb{R} .

Exercice 18 •••• Soit A une partie de \mathbb{R} vérifiant

(i)
$$\forall x \in \mathbb{R}, \quad \exists a, b \in A, \quad a < x < b$$
 (ii) $\forall a, b \in A, \quad \frac{a+b}{2} \in A.$

Montrer que A est dense dans \mathbb{R} .

Exercice 19 •••• Enumération des rationnels via une suite de Stern

Soit la fonction f définie sur \mathbb{R}_+ par $f(x) = \frac{1}{1 + 2|x| - x}$ et la suite $(u_n)_{n \in \mathbb{N}}$ définie par

$$u_0 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ passe par chaque rationnel positif une et une seule fois.

— Exercice 20 •••• **—** Caractérisation des rationnels

Montrer qu'un réel x est un rationnel si et seulement si son développement décimal propre est périodique à partir d'un certain rang.

Indication: si les entiers n et 10 sont premiers entre eux, on pourra admettre qu'il existe un entier naturel non nul r tel que $10^r \equiv 1 [n]$.

Indications

- Exercice 10. 3. On pourra partir de « $\forall a \in A$, $d(x,A) \leq |x-a|$ »et penser à l'inégalité triangulaire.
- **Exercice 13. 2.** On pourra distinguer les cas $x \lfloor x \rfloor \in \left[\frac{k}{n}, \frac{k+1}{n} \right[$, pour $k \in [0, n-1]$.
- **Exercice 15.** Commencer par établir $\lfloor \sqrt{4n+1} \rfloor \leq \lfloor \sqrt{n} + \sqrt{n+1} \rfloor \leq \lfloor \sqrt{4n+2} \rfloor$ et conclure en examinant les classes de congruence des carrés modulo 4.
- Exercice 16. Que peut-on conjecturer en observant le nombre de chiffres des premières puissance de 2?

Élément de réponses

- **Exercice 2.** 1. $\inf = -5$ et $\sup = \max = 2$. 2. $\inf = 0$. 3. $\inf = -7$ et $\sup = \max = 7$.
 - **4.** inf = min = 3. **5.** inf = min = $-\frac{5}{3}$ et sup = max = $\frac{1}{72}$. **6.** inf = min = 0.
 - 7. inf = min = $\sin \frac{10\pi}{7}$ et $\sup = \max = \sin \frac{4\pi}{7}$.
- **Exercice 3. 2.** $\inf(-A) = -\sup A$ et $\sup(A) = -\inf(A)$
 - $\inf(aA) = a \inf A \text{ et } \sup(aA) = a \sup(A)$
 - $\inf(A+B) = \inf(A) + \inf(B)$ et $\sup(A+B) = \sup(A) + \sup(B)$.
- Exercice 5. $\sup_{I} (f+g) \leqslant \sup_{I} f + \sup_{I} g$.
- **Exercice 6.** On a sur [0,1], |f| < 1, sup f = 1 et inf f = -1, et f n'atteint pas ses bornes.
- **Exercice 7. 3.** $f^* = f$. **4.** f^* est croissante sur \mathbb{R} .
- Exercice 13. 1.b $[x] |\frac{x}{2^{n+1}}|$.
- Exercice 14. 1.a. $[2x] = \begin{cases} 2[x] & \text{si } x [x] < \frac{1}{2}, \\ 2[x] + 1 & \text{si } x [x] \ge \frac{1}{2}. \end{cases}$
 - **1.b.** $[-x] = \begin{cases} -\lfloor x \rfloor & \text{si } x \in \mathbb{Z}, \\ -|x| 1 & \text{sinon.} \end{cases}$ **1.c.** $[x + \frac{1}{4}] = \begin{cases} |x| & \text{si } x \lfloor x \rfloor < \frac{3}{4}, \\ |x| + 1 & \text{si } x |x| \geqslant \frac{3}{4}. \end{cases}$
 - **2.a.** Distinguer les cas $x |x| \in [0, \frac{1}{2}]$ et $x |x| \in [\frac{1}{2}, 1]$.
 - **2.c.** Distinguer les cas $x \lfloor x \rfloor \in \left[\frac{p}{k}, \frac{p+1}{k} \right]$, pour $p \in [0, 5]$.
 - **3.a.** $\begin{bmatrix} \frac{3}{2}, 2 \end{bmatrix}$. **3.b.** $\begin{bmatrix} \frac{2}{3}, \frac{4}{3} \end{bmatrix} \cup \begin{bmatrix} 2, \frac{7}{3} \end{bmatrix} \cup \begin{bmatrix} \frac{11}{3}, 4 \end{bmatrix}$. **3.c.** $\begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$. **3.d.** $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \cup \begin{bmatrix} 2, \frac{5}{2} \end{bmatrix}$.
- Exercice 16. Oui.