Équations différentielles linéaires

Cahier de calcul : fiche 20.

Banque CCINP: exercices 4 et 18.

Equations différentielles linéaires d'ordre 1

— Exercice 1 ••○○ —

Déterminer les solutions réelles des équations différentielles suivantes.

1.
$$xy' \ln x - y = 2x^2 \ln^2 x$$
 sur $]0,1[$. **2.** $xy' - y = x$ sur \mathbb{R}^*_+ avec $y(1) = 1$.

2.
$$xy' - y = x \text{ sur } \mathbb{R}_+^* \text{ avec } y(1) = 1$$

3.
$$\sqrt{1-x^2}y'-y=1 \text{ sur }]-1,1[.$$

3.
$$\sqrt{1-x^2}y'-y=1$$
 sur $]-1,1[$. **4.** $y'+x^2y+x^2=0$ sur \mathbb{R} avec $y(0)=0$.

5.
$$y' + y \operatorname{th} x = \operatorname{th} x \operatorname{sur} \mathbb{R}$$

5.
$$y' + y \operatorname{th} x = \operatorname{th} x \operatorname{sur} \mathbb{R}$$
. **6.** $(x - 1)y' + y = x \operatorname{sur} [1, +\infty[\operatorname{avec} y(2) = 2.$

7.
$$3xy' - 4y = x \text{ sur } \mathbb{R}_+^*$$

7.
$$3xy' - 4y = x \operatorname{sur} \mathbb{R}_{+}^{*}$$
. **8.** $xy' - 2y = x^{3} \sin x \operatorname{sur} \mathbb{R}_{+}^{*}$.

9.
$$(\bullet \bullet \bullet)$$
 $y' = |y| \operatorname{sur} \mathbb{R}$

10.
$$y' - y \tan x = \frac{1}{\cos^2 x} \sup \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 avec $y(0) = 1$.

— Exercice 2 ••∘∘ — **У**

Déterminer toutes les fonctions $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ pour lesquelles

1.
$$4y' + y = \cos x$$
 et $y(0) = 0$. **2.** $y' - 3y = e^{3x} + e^x \sin x$.

2.
$$y' - 3y = e^{3x} + e^x \sin x$$
.

$$3. y' + 3y = e^{-3x} + 6$$

3.
$$y' + 3y = e^{-3x} + 6$$
. **4.** $y' - y = \cos x + e^x \sin(2x)$ et $y(0) = 0$.

5.
$$y' + 4y = 2 + e^{-4x} + \sin x$$
.

— Exercice 3 ••∘∘ — **У**

Résoudre l'équation y' + y = |x| d'inconnue $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$.

— Exercice 4 •○○○ — ☑ Banque d'exercices CCINP 2025 (42)

On considère les deux équations différentielles suivantes

$$(H): 2xy' - 3y = 0$$
 et $(E): 2xy' - 3y = \sqrt{x}$.

- **1.** Résoudre (H) sur l'intervalle $]0, +\infty[$.
- **2.** Résoudre (E) sur l'intervalle $]0, +\infty[$.
- **3.** L'équation (E) admet-elle des solutions sur l'intervalle $[0, +\infty[$?

— Exercice 5 •••∘ **— ☑** Recollement de solutions

Résoudre sur \mathbb{R} les équations différentielles suivantes.

1.
$$xy' + y = Arctan x$$
. **2.** $sin(x)y' - cos(x)y = 0$.

2.
$$\sin(x)y' - \cos(x)y = 0$$
.

Exercice 6 •ooo **D**éterminer les fonctions
$$f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$$
 telles que $\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y).$

- **1.** Soit $\alpha \in \mathbb{C}$. Montrer que la fonction $t \longmapsto e^{\alpha t}$ est la seule fonction dérivable sur \mathbb{R} solution de $\begin{cases} y' = \alpha y \\ y(0) = 1. \end{cases}$
- 2. Déterminer les fonctions dérivables de \mathbb{R} dans \mathbb{K} vérifiant l'équation fonctionnelle

$$\forall (s,t) \in \mathbb{R}^2, \quad f(s+t) = f(s)f(t).$$

9.
$$(\bullet \bullet \bullet)$$
 $y' = |y| \operatorname{sur} \mathbb{R}$.

10. $y' - y \tan x = \frac{1}{\cos^2 x} \operatorname{sur} \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\operatorname{avec} y(0) = 1.$

Exercice 8 $\bullet \bullet \circ \circ \longrightarrow \mathbb{Q} \subseteq \mathbb{Z}$ Déterminer les fonctions $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ telles que $\forall (x, y) \in \mathbb{R}^2, \quad f(x + y) = \operatorname{e}^x f(y) + \operatorname{e}^y f(x).$

Exercice 9 •••• Déterminer les fonctions
$$f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$$
 telles que $f(0) \neq 0$ et $\forall (x, y) \in \mathbb{R}^2, \quad f(x + y) = f(x)f'(y) + f(y)f'(x).$

Exercice 10 •000 **D** Donner une équation différentielle dont les solutions sont les fonctions de la forme
$$x \mapsto \frac{C+x}{1+x^2}$$
, où $C \in \mathbb{R}$.

Exercice 11 •••• Soit l'équation différentielle
$$y' = a(x)y + b(x)$$
, avec $a, b \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, et $x_0 \in \mathbb{R}$. Montrer que les tangentes au point d'abscisse x_0 aux courbes intégrales sont ou bien parallèles, ou bien toutes concourantes.

Exercice 12 •••• Résoudre l'équation, d'inconnue
$$y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$$
,

$$y' + y = \int_0^1 y(u) \, \mathrm{d}u.$$

Exercice 13 •••• Soit $a, b \in \mathscr{C}(\mathbb{R}, \mathbb{R})$ périodiques de période 1. À quelle(s) condition(s) l'équation différentielle y' = a(x)y + b(x) admet-elle des solutions 1-périodiques? Le cas échéant, les déterminer.

— Exercice 14 •••∘ **— ⊆** Équations de Bernoulli

Une équation de Bernoulli est une équation différentielle de la forme

$$(\mathcal{B}_{\lambda}): \quad y' = a(x)y + b(x)y^{\alpha},$$

où a et b sont deux fonctions continues sur un intervalle I à valeurs réelles et α un réel distinct de 0 et 1. Notons que, pour α quelconque, il est nécessaire que y soit à valeurs strictement positives.

- 1. Pour quelle valeur du réel β le changement de fonction inconnue $y=z^{\beta}$ permet-il de se ramener à une équation linéaire.
- **2.** Application.
 - **a.** Résoudre $x^2y' + y + y^2 = 0$ avec y(1) = 1.
 - **b.** Résoudre $xy' y + 3x^2y^2 = 0$.

— Exercice 15 •••∘ **—** ♀ **ਓ** Équations de Riccati

Une équation de Riccati est une équation différentielle de la forme

$$(\mathcal{R}): y' = a(x)y^2 + b(x)y + c(x),$$

où a, b et c sont des fonctions continues sur un intervalle I à valeurs réelles.

- 1. a. Montrer que si y_0 est une solution particulière de (\mathcal{R}) , le changement d'inconnue $z = y - y_0$ aboutit à une équation de Bernoulli avec $\alpha = 2$.
 - **b.** Quel changement de fonction inconnue peut-on finalement effectuer pour se ramener à une équation linéaire d'ordre 1?
- **2.** Application. Résoudre

$$(\mathcal{R}): (1+x^3)y' = y^2 + x^2y + 2x.$$

Indication: on pourra chercher une solution particulière sous forme polynomiale.

Équations différentielles linéaires d'ordre 2

- **Exercice 16** •••• Déterminer les fonctions $u \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$ pour lesquelles
- 1. $y'' + y' 2y = 10 \sin x$, y(0) = 0 et y'(0) = 1.
- **2.** $y'' 4y' + 4y = 2e^{2x} + 4$ et y(0) = y'(0) = 1.
- 3. $y'' + y' = \sinh x$.
 - **4.** $u'' u = e^x \cos(2x)$.
- **5.** $y'' 3y' + 2y = e^{-x} \sin x$. **6.** $y'' + 3y' + 2y = \cosh x$.
- 7. $y'' + 2y' + y = \sin x$. 8. $y'' + 4y = \sin(2x)$.
- **9.** $y'' 2y' + 5y = e^x \cos(2x)$.

— Exercice 17 •○○○ — 🗹

1. Déterminer l'unique solution sur \mathbb{R} du problème de Cauchy

$$y'' + y = 3x^2$$
, $y(0) = 1$, $y'(0) = 2$.

- 2. a. Montrer que l'équation $2y'' 3y' + y = x e^x$ possède une solution de la forme $x \longmapsto (ax^2 + bx) e^x$ avec a et b dans \mathbb{R} .
 - **b.** En déduire toutes les solutions réelles sur \mathbb{R} de l'équation

$$2y'' - 3y' + y = x e^x.$$

- Exercice 18 ••○○ ☑ Banque d'exercices CCINP 2025 (31)
- **1.** Déterminer une primitive de $x \mapsto \cos^4 x$.
- 2. Résoudre sur \mathbb{R} l'équation différentielle $y'' + y = \cos^3 x$, en utilisant la méthode de variation des constantes (programme de seconde année).

— Exercice 19 ••∘∘ — ✓ Système différentiel

Résoudre les systèmes différentiels suivants, d'inconnues $(y, z) \in \mathcal{D}(\mathbb{R}, \mathbb{R})^2$.

1.
$$\begin{cases} y' - y = z \\ z' + z = 3y \end{cases}$$
 2.
$$\begin{cases} y' + 2y = z \\ z' + z = 6y \end{cases}$$

2.
$$\begin{cases} y' + 2y = z \\ z' + z = 6y \end{cases}$$

réels (a, b) tels que toute solution de y'' + ay' + by = 0 soit bornée.

— Exercice 21 •••∘ — ☑ Changement de variables

1. Résoudre sur \mathbb{R}_+^* l'équation différentielle

$$x^2y'' + 3xy' + y = (x+1)^2$$

en posant $x = e^t$. Cela revient à poser $z(t) = y(e^t)$ et à résoudre une nouvelle équation différentielle d'inconnue z (ici un changement de variable est un changement de fonction).

2. Résoudre sur \mathbb{R} l'équation différentielle

$$(1+x^2)^2y'' + 2x(1+x^2)y' + 4y = 0$$

en posant $x = \tan t$.

3. Résoudre sur]-1,1[l'équation différentielle

$$(1 - x^2)y'' - xy' + y = 0$$

en posant $x = \sin t$.

4. Soit $\alpha \in \mathbb{R}^*$. Résoudre sur \mathbb{R} l'équation différentielle

$$(1+x^2)y'' + xy' - \alpha^2 y = 0$$

en posant $x = \sinh t$.

Indication: on pourra établir que sh⁻¹: $x \mapsto \ln(x + \sqrt{x^2 + 1})$ pour conclure.

Exercice 22 •••• **Equations d'Euler** Soit $(a,b) \in \mathbb{R}^2, c \in \mathscr{C}(\mathbb{R},\mathbb{R})$ et

$$(\mathcal{E}): \quad x^2y'' + axy' + by = c(x).$$

- **1.** Montrer que la résolution de (\mathcal{E}) sur $]0, +\infty[$ (resp. sur $]-\infty, 0[$) équivaut à la résolution d'une équation différentielle linéaire du second ordre à coefficients constants via le changement de variable $x = e^t$ (resp. $x = -e^t$).
- **2.** Application. Résoudre $x^2y'' 5xy' + 9y = x + 1 \text{ sur } \mathbb{R}$.
- **Exercice 23** •••• **W** Résoudre l'équation y'' + |y| = 1 avec $\begin{cases} y(0) = 0 \\ y'(0) = 1. \end{cases}$
- **Exercice 24** •••• Déterminer les fonctions $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ telles que

$$\forall x \in \mathbb{R}, \quad f'(x) = 2f(-x) + x.$$

Exercice 25 •••• On considère l'équation d'inconnue $f \in \mathcal{D}(\mathbb{R}_+^*, \mathbb{R})$

$$(\mathcal{E}): \quad \forall x > 0, \quad f'(x) = f\left(\frac{1}{x}\right).$$

- **1.** Montrer que toute solution de (\mathcal{E}) est deux fois dérivables sur \mathbb{R}_+^* et solution d'une équation différentielle du second ordre à préciser.
- 2. Résoudre l'équation trouvée à la question précédente grâce au changement de variable $x=\mathrm{e}^t.$
- **3.** Montrer que les solutions de (\mathcal{E}) sont exactement les fonctions

$$x \longmapsto \lambda \sqrt{x} \sin\left(\frac{\sqrt{3}}{2} \ln x + \frac{\pi}{3}\right)$$
, avec $\lambda \in \mathbb{R}$.

Exercice 26 •••• On considère l'équation d'inconnue $f \in \mathcal{D}^2(\mathbb{R}, \mathbb{R})$

$$(\mathcal{E}): ff'' - f'^2 = 1.$$

- **1.** Soit f une solution de (\mathcal{E}) .
 - **a.** Montrer que f ne s'annule pas sur \mathbb{R} .
 - **b.** Montrer que $\frac{f''}{f}$ est constante sur \mathbb{R} .
 - **c.** Exprimer la valeur de cette constante en fonction de f(0) et f'(0).
- **2.** Montrer qu'il existe une et une seule solution f de (\mathcal{E}) pour laquelle f(0) = 1 et f'(0) = 0.
- **3.** Soit f une solution de (\mathcal{E}) et $(a, b, \lambda) \in \mathbb{R}^3$ avec $a \neq 0$. À quelle condition sur λ la fonction $x \longmapsto \lambda f(ax + b)$ est-elle solution de (\mathcal{E}) ?
- **4.** En déduire toutes les solutions de (\mathcal{E}) .

d'ordre 2 lors de l'analyse.

signe d'une solution y au voisinage à gauche et à droite de 0.

Exercice 24. Procéder par analyse synthèse et se ramener à une équation différentielle

Exercice 15. 2. $x \mapsto x^2$ est une solution particulière. Exercice 23. Commencer par résoudre les équations linéaires y'' + y = 1 et y'' - y = 1 sur \mathbb{R} . Puis procéder par analyse synthèse. On notera que la condition initiale impose le simple application par analyse synthèses.

Exercice 13. Écrire la solution générale y à l'aide d'une intégrale et expliciter y(x+1)-y(x).

Exercice 8. Procéder par analyse synthèse ou se ramener à l'exercice 6. Exercice 9. On pourra considérer le taux d'accroissement $\frac{f(x+h)-f(x)}{h}$.

Exercice 6, 7, 9, 12. Procéder par analyse synthèse.

Indications

Éléments de réponses

Exercice 1. λ désigne un réel quelconque.

1.
$$x \mapsto x^2 \ln x + \lambda \ln x$$
. 2. $x \mapsto x \ln x + x$. 3. $x \mapsto -1 + \lambda e^{\operatorname{Arcsin}(x)}$.
4. $x \mapsto -1 + \exp\left(-\frac{x^3}{3}\right)$. 5. $x \mapsto 1 + \frac{\lambda}{\operatorname{ch}(x)}$. 6. $x \mapsto \frac{x^2}{2(x-1)}$.

7. $x \mapsto \lambda x^{4/3} - x$. 8. $x \mapsto (\lambda - \cos x)x^2$.

9. $x \mapsto \lambda e^x$ avec $\lambda \ge 0$ ou $x \mapsto \lambda e^{-x}$ avec $\lambda \le 0$. **10.** $x \mapsto \frac{x+1}{\cos x}$

Exercice 2. λ désigne un réel quelconque.

1.
$$x \mapsto \frac{1}{17} \left(4\sin x - \cos x + e^{x/4} \right)$$
. 2. $-\frac{1}{5} (\cos x + 2\sin x) e^x + (\lambda + x) e^{3x}$.

3.
$$2 + (x + \lambda) e^{-3x}$$
. **4.** $x \mapsto -\frac{1}{2}\cos(2x) e^x - \frac{1}{2}\cos x + e^x + \frac{1}{2}\sin(x)$.

5.
$$x \mapsto (\lambda + x) e^{-4x} - \frac{1}{17} \cos x + \frac{4}{17} \sin x + \frac{1}{2}$$
.

Exercice 3.
$$x \mapsto (\lambda_0(x) + \lambda) e^{-x}$$
, où $\lambda \in \mathbb{R}$ et $\lambda_0 : x \mapsto \begin{cases} (1-x) e^x & \text{si } x \leq 0 \\ (x-1) e^x + 2 & \text{si } x \geq 0. \end{cases}$

Exercice 4. 1.
$$x \mapsto \lambda x^{3/2}$$
 avec $\lambda \in \mathbb{R}$. 2. $x \mapsto \lambda x^{3/2} - \frac{\sqrt{x}}{2}$ avec $\lambda \in \mathbb{R}$. 3. Non.

Exercice 5. 1. Les solutions sur
$$\mathbb{R}_{+}^{*}$$
 et \mathbb{R}_{+}^{*} sont les $x \longmapsto \operatorname{Arctan}(x) - \frac{\ln(1+x^{2})}{2x} + \frac{\lambda}{x}$.

L'unique solution sur
$$\mathbb{R}$$
 est $x \longmapsto \begin{cases} \operatorname{Arctan}(x) - \frac{\ln(1+x^2)}{2x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$

2. Les solutions sur les intervalles $I_k = |k\pi|, (k+1)\pi|$ sont les $\lambda \sin|_{I_k}$ avec $\lambda \in \mathbb{R}$, pour tout $k \in \mathbb{Z}$. Les solutions sur \mathbb{R} sont les $\lambda \sin$ avec $\lambda \in \mathbb{R}$.

Exercice 6. $x \longmapsto ax \text{ avec } a \in \mathbb{R}$.

Exercice 7. 2. La fonction nulle et les fonctions $t \mapsto e^{\alpha t}$, avec $\alpha \in \mathbb{K}$.

Exercice 8. $x \mapsto cx e^x, c \in \mathbb{R}$.

Exercice 9. $x \mapsto \lambda e^{x/(2\lambda)}, \lambda \in \mathbb{R}^*$.

Exercice 10.
$$y' + \frac{2x}{1+x^2}y = \frac{1}{1+x^2}$$
.

Exercice 11. Si $a(x_0) = 0$, les tangentes sont parallèles, sinon elles concourent au point $\left(x_0 - \frac{1}{a(x_0)}, -\frac{b(x_0)}{a(x_0)}\right)$

Exercice 12. Les solutions sont les fonctions contantes.

Exercice 13. Pour tout $x \in \mathbb{R}$, $y(x) = \left(\lambda + \int_{0}^{x} b(t) e^{-A(t)} dt\right) e^{A(x)}$, avec A une primitive de $a \operatorname{sur} \mathbb{R} \operatorname{et} \lambda \in \mathbb{R}$. Posons $\alpha = \int_{0}^{1} a(t) dt \operatorname{et} \beta = \int_{0}^{1} b(t) e^{-A(t)} dt$, alors

$$\forall x \in \mathbb{R}, \quad y(x+1) = y(x) + (\lambda(e^{\alpha} - 1) + \beta e^{\alpha}) e^{A(x)}$$

 $_{
m et}$

- si $\alpha \neq 0$, l'équation admet une unique solution 1-périodique, obtenue pour $\lambda = \frac{\beta e^{\alpha}}{1 e^{\alpha}}$;
- si $\alpha = 0$ et $\beta = 0$, toute solution est 1-périodique :
- si $\alpha = 0$ et $\beta \neq 0$, aucune solution n'est 1-périodique.

Exercice 14. 1 $\beta = (1 - \alpha)^{-1}$.

Exercice 15. 1.a $z = y - y_0$ mène à l'équation de Bernoulli $z' = (2a(x)y_0(x) + b(x))z + a(x)z^2$.

1.b L'exercice 14 suggère le changement de fonction $y = y_0 + 1/u$ pour se ramener à

$$u' + (2a(x)y_0(x) + b(x))u + a(x) = 0.$$

2. Le changement de fonction $y = x^2 + 1/u$ ramène à l'équation linéaire d'ordre 1

$$(1+x^3)u' + 3x^2u + 1 = 0$$

qui admet $x \longmapsto \frac{\lambda - x}{1 + x^3}$ pour solutions, avec $\lambda \in \mathbb{R}$, sur $J \in \{]-\infty, -1[,]1, +\infty[\}$.

Finalement les solutions maximales de (\mathcal{R}) sont les fonctions $x \longmapsto x^2$ et $x \longmapsto x-1$ sur

 \mathbb{R} et les fonctions $x \longmapsto \frac{1 + \lambda x^2}{\lambda - x}$ sur $]-\infty, \lambda[$ ou $]\lambda, +\infty[$, avec $\lambda \in \mathbb{R}\setminus\{-1\}$.

Exercice 16. 1. $x \mapsto 2e^x - e^{-2x} - 3\sin x - \cos x$. 2. $x \mapsto 1 + (x^2 + x)e^{2x}$.

3. $x \mapsto \lambda e^{-x} + \mu + \frac{1}{2}x e^{-x} + \cosh x - \frac{1}{4}e^{x}$.

4. $x \mapsto \lambda e^{-x} + \mu e^{x} - \frac{1}{9} \cos(2x) e^{x} + \frac{1}{9} e^{x} \sin(2x)$.

5. $x \mapsto \lambda e^{2x} + \mu e^x + \frac{1}{10}(\cos x + \sin x)e^{-x}$. **6.** $x \mapsto \lambda e^{-x} + \mu e^{-2x} + \frac{x}{2}e^{-x} + \frac{1}{12}e^x$.

7. $x \mapsto (\lambda x + \mu) e^{-x} - \frac{1}{4} x^2 e^{-x} + \frac{1}{8} e^{x}$. 8. $\lambda \cos(2x) + \mu \sin(2x) - \frac{1}{4} x \cos(2x)$.

9. $(\lambda \cos(2x) + \mu \sin(2x)) e^x + \frac{1}{4} x e^x \sin(2x)$

Exercise 17. 1. $x \mapsto 7\cos x + 2\sin x + 3x^2 - 6$. 2. $x \mapsto \lambda e^{x/2} + \frac{1}{2}(x^2 - 4x + \mu) e^x$.

Exercice 18. 1. $x \mapsto \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x$. 2. $\cos^3 x = \frac{1}{4}\cos(3x) + \frac{3}{4}\cos(x)$, ce qui mène aux solutions $x \mapsto \lambda \cos x + \mu \sin x - \frac{1}{32} \cos(3x) + \frac{3}{8} x \sin(x) + \frac{3}{8} \cos(x)$, avec $\lambda, \mu \in \mathbb{R}$.

Exercise 19. 1. $(x \mapsto \lambda e^{2x} + \mu e^{-2x}, x \mapsto \lambda e^{2x} - 3\mu e^{-2x})$, avec $\lambda, \mu \in \mathbb{R}$.

2. $(x \longmapsto \lambda e^x + \mu e^{-4x}, x \longmapsto 3\lambda e^x - 2\mu e^{-4x})$, avec $\lambda . \mu \in \mathbb{R}$

Exercice 20. a = 0 et b > 0

Exercice 21. 1. $x \mapsto \lambda \frac{\ln x}{x} + \frac{\mu}{x} + \frac{x^2}{9} + \frac{x}{2} + 1$. 2. $x \mapsto \lambda \cos(2 \operatorname{Arctan} x) + \mu \sin(2 \operatorname{Arctan} x)$.

3. $x \mapsto -\lambda x + \mu \sqrt{1-x^2}$. 4. $x \mapsto \lambda (x + \sqrt{1+x^2})^{\alpha} + \mu (x + \sqrt{1+x^2})^{-\alpha}$.

Exercise 22. 1. (\mathcal{E}) équivaut sur $[0, +\infty[$ à $z'' + (a-1)z' + bz = c(e^t)$, où $z(t) = y(e^x)$.

2. Les solutions sont les fonctions $x \mapsto \begin{cases} (\lambda \ln(x) + \mu)x^3 + \frac{x}{4} + \frac{1}{9} & \text{si } x > 0 \\ \frac{1}{9} & \text{si } x = 0 \\ (\lambda' \ln(-x) + \mu')x^3 + \frac{x}{4} + \frac{1}{9} & \text{si } x < 0, \end{cases}$ $\lambda, \lambda', \mu, \mu' \in \mathbb{R}$.

Exercice 23. L'unique solution est donnée par $x \mapsto \begin{cases} e^x - 1 & \text{si } x \leq 0 \\ \sin x - \cos x + 1 & \text{si } 0 \leq x \leq 3\pi/2 \\ e^{-x+3\pi/2} - 1 & \text{si } x \geq 3\pi/2 \end{cases}$

Exercice 24. $x \mapsto a\cos(2x) + a\sin(2x) + \frac{x}{2} + \frac{1}{4}, \ a \in \mathbb{R}.$

Exercise 25. 1. (\mathcal{E}') : $x^2 f'' + f = 0$. 2. (\mathcal{E}') équivaut à (\mathcal{E}'') : z'' - z' + z = 0, via $z(t) = y(e^x)$.

Exercice 26. 1.c $\frac{1+f'(0)^2}{f(0)^2}$. 2. $f=\operatorname{ch}$ 3. $\lambda=\pm\frac{1}{a}$. 4. $x\longmapsto\frac{1}{\alpha}\operatorname{ch}(\alpha x+\beta)$, avec $\alpha\in\mathbb{R}^*$ et $\beta \in \mathbb{R}$.