6 Nombres complexes

Cahier de calcul : fiches 12 à 14. Banque CCINP : exercices 32 et 33.

Écriture algébrique

Exercice 1 •000 **Sachant** $i^2 = -1$, simplifier les expressions suivantes.

1. i^3 . **2.** i^4 . **3.** i^5 . **4.** i^{14} . **5.** i^{100} . **6.** i^{-1} . **7.** i^{-3} .

— Exercice 2 ○○○○ **— ☑**

Déterminer l'écriture algébrique de chacun des nombres complexes ci-dessous.

1.
$$z_1 = 3(2-i) + i(3+2i)$$
. **2.** $z_2 = (5+2i)(1-i)$. **3.** $z_3 = -5i(5-4i) - 3i$.

4.
$$z_4 = (5+2i)^2$$
. **5.** $z_5 = (2-i)^2 - 2(1+3i)^2$. **6.** $z_6 = (5+2i)(5-2i)$.

7.
$$z_7 = \frac{1+i}{i}$$
. **8.** $z_8 = \frac{1}{1-i}$. **9.** $z_9 = \frac{-2+i}{2+i}$.

— Exercice 3 ○○○○ **— ☑**

Déterminer la partie réelle et la partie imaginaire de chacun des complexes suivants.

1.
$$(2+i)^2$$
. **2.** $\frac{3-4i}{1+i}$. **3.** $\frac{\sqrt{3}-i}{1+\sqrt{3}\times i}$.

Conjugué et module

— Exercice 4 ○○○○ **— ☑**

Donner l'écriture algébrique du conjugué de chacun des nombres complexes suivants.

1.
$$1+i$$
. **2.** $2i-3$. **3.** $i(1+2i)$. **4.** $\frac{1}{i}$. **5.** $\frac{2}{2-i}$. **6.** $(1-i)(1+i)$.

— Exercice 5 ○○○○ **— ☑**

Déterminer le module des nombres complexes suivants.

1.
$$1-2i$$
. **2.** $-5i$. **3.** $(3-2i)(2+i)$. **4.** $-i(1-2i)$. **5.** $\frac{1+i\sqrt{3}}{3i}$. **6.** $\frac{3-i\sqrt{3}}{-\sqrt{3}+i}$.

— Exercice 6 •○○○ —

Déterminer la forme algébrique, le conjugué et le module du nombre complexe

$$\frac{(2-i)(5+2i)}{3-4i}.$$

Exercice 7 •••• **Exercice 7** •••• **Exercice 7** Résoudre dans \mathbb{C}^2 les systèmes suivants.

1.
$$\begin{cases} (1+i)z - it = 2+i \\ (2+i)z + (2-i)t = 2i \end{cases}$$
 2.
$$\begin{cases} (3-i)z + (2+i)t = 3+4i \\ (5-7i)z - (2-3i)t = 5+8i \end{cases}$$

— Exercice 8 •○○○ — Formule du parallélogramme

Montrer que, pour tous $z, z' \in \mathbb{C}$,

$$|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2).$$

Pourquoi cette relation est-elle nommée formule du parallélogramme?

Exercice 9 •••• Pour $z \in \mathbb{C} \setminus \{3i\}$, on pose $f(z) = \frac{3z-i}{z-3i}$.

- **1.** Déterminer les complexes z tels que $f(z) \in \mathbb{R}$.
- **2.** Déterminer les complexes z tels que |f(z)| = 1.
- **3.** Montrer que f réalise une bijection de $\mathbb{C}\setminus\{3i\}$ sur une partie de \mathbb{C} à déterminer et expliciter sa réciproque.

Exercice 10 •000 **Soit** $z \in \mathbb{C}$ tel que $|z| \neq 1$. Montrer que

$$\forall n \in \mathbb{N}, \quad \left| \frac{1 - z^{n+1}}{1 - z} \right| \le \frac{1 - |z|^{n+1}}{1 - |z|}.$$

— Exercice 11 ••○○ **— ☑**

- **1.** Déterminer une factorisation de $a^2 + b^2$ dans \mathbb{C} , pour tous $a, b \in \mathbb{C}$.
- **2.** Soit $m, n \in \mathbb{N}$. Montrer que si m et n sont chacun la somme de deux carrés d'entiers, leur produit mn l'est aussi.

Équations

1. a.
$$3z + iz = 0$$
.

b.
$$z + 2iz = i$$

1. a.
$$3z + iz = 0$$
. b. $z + 2iz = i$. c. $z + 2 = i(z + 1)$. d. $\frac{z - 5}{z - i} = i$.

$$\mathbf{d.} \ \frac{z-5}{z-i} = i$$

2.
$$(iz+1)(z+3i)(z-1+4i)=0$$
.

3. a.
$$z^2 - 3z + 4$$

b.
$$z^2 - 4z + 4 = 0$$

3. a.
$$z^2 - 3z + 4 = 0$$
. b. $z^2 - 4z + 4 = 0$. c. $z^2 + (4 - 3i)z = 2 + 8i$.

d.
$$z^2 + 3 = 0$$

e.
$$3z^2 + 3z + 2 = 0$$
.

d.
$$z^2 + 3 = 0$$
. **e.** $3z^2 + 3z + 2 = 0$. **f.** $6z^2 + (21 - 14i)z + 5 - 37i = 0$.

4. a.
$$z^4 + 3z^2 + 2 = 0$$
. b. $z^4 - 32z^2 - 144 = 0$.

b.
$$z^4 - 32z^2 - 144 = 0$$

5. Résoudre dans
$$\mathbb{C}^2$$
 les systèmes suivants d'inconnues (z, z') .

a.
$$\begin{cases} 2iz + z' = 2i \\ 3z - iz' = 1. \end{cases}$$
 b.
$$\begin{cases} zz' = 5 \\ z + z' = 2. \end{cases}$$
 c.
$$\begin{cases} zz' = -5i \\ z + z' = 3i - 3. \end{cases}$$

$$\mathbf{b.} \ \left\{ \begin{array}{l} zz' = 5 \\ z + z' = 2 \end{array} \right.$$

$$\mathbf{c.} \ \left\{ \begin{array}{l} zz' = -5i \\ z + z' = 3i - 3 \end{array} \right.$$

6. Résoudre dans C les équations suivantes.

a.
$$2\overline{z} = i - 1$$

a.
$$2\overline{z} = i - 1$$
. **b.** $(2z + i - 1)(i\overline{z} + i - 2) = 0$. **c.** $\frac{\overline{z} - 1}{\overline{z} + 1} = i$.

$$\mathbf{c.} \ \ \frac{\overline{z}-1}{\overline{z}+1}=i$$

Exercice 13 •••• **Trouver les complexes** p et q tels que l'équation $z^2 + pz + q = 0$ admette pour solutions 1 + 2i et 3 - 5i.

Exercice 14 •000 **On considère dans** \mathbb{C} l'équation $(\mathcal{E}_{\lambda}): x^2 - 3x + 4 = \lambda$ dépendant du paramètre $\lambda \in \mathbb{R}$. Pour quelles valeurs de λ l'équation (\mathcal{E}_{λ}) admet-elle deux solutions distinctes conjuguées?

Exponentielle complexe et forme trigonométrique

— Exercice 15 •○○○ —

- 1. Déterminer une forme trigonométrique des nombres suivants.

- **a.** $1 \sqrt{2}$. **b.** -5i. **c.** 2 i. **d.** $(-3 + i\sqrt{3})^{19}$. **e.** $-\frac{1 + 2i}{3 + 4i}$.
- **2.** Déterminer la forme algébrique de $(1+i\sqrt{3})^{1000}$.
- **3.** Déterminer une forme trigonométrique de $1 + e^{i\theta}$, où $\theta \in [0, 2\pi]$.

Exercice 16 •••• Déterminer tous les entiers n pour lesquels.

1.
$$(1+i)^n \in \mathbb{R}$$

1.
$$(1+i)^n \in \mathbb{R}$$
. **2.** $(\sqrt{3}+i)^n \in i\mathbb{R}$.

Exercice 17 •••• Simplifier $\operatorname{Re}\left(\frac{1}{1-z}\right)$, pour tout $z \in \mathbb{U}\setminus\{1\}$.

Exercice 18 •••• Soit
$$\theta \in \mathbb{R}$$
, on pose $z = e^{i\theta}$. Déterminer une forme trigonométrique de $1 + z + z^2$.

Exercice 19 •••• Soit
$$a, b, c \in \mathbb{U}$$
. Montrer que
$$|a+b+c| = |ab+bc+ca|.$$

Exercice 20 ••••
$$\longrightarrow$$
 Soit $\omega \in \mathbb{C} \setminus \mathbb{U}$.

Montrer que $z\longmapsto \frac{z+\omega}{\overline{\omega}z+1}$ est une bijection de $\mathbb U$ sur $\mathbb U$ et déterminer sa réciproque.

— Exercice 21 ••∘∘ — **У**

- 1. Linéariser les expressions suivantes.
 - **a.** $\sin x \cos^2(2x)$.
- **b.** $\sin^3(2x)\cos(3x)$.
- 2. Calculer les intégrales suivantes.

a.
$$\int_{0}^{\frac{\pi}{2}} \cos^3 x \sin(3x) dx$$
. **b.** $\int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^2 x dx$.

b.
$$\int_0^{\frac{\pi}{2}} \sin^4 x \cos^2 x \, dx$$

— Exercice 22 •○○○ —

- 1. Déterminer les racines carrées de $i + \sqrt{3}$ sous formes algébrique et trigonométrique.
- **2.** En déduire la valeur de $\cos\left(\frac{\pi}{12}\right)$.

— Exercice 23 ••∘∘ — ✓

- **1.** Pour tout $x \in \mathbb{R}$, exprimer $\cos(5x)$ en fonction de $\cos x$.
- 2. En déduire une expression explicite de
 - **a.** $\cos^2 \frac{\pi}{10}$. **b.** $\cos \frac{\pi}{5}$. **c.** $\sin \frac{\pi}{5}$.

Exercice 24 ••oo — 🗹

- **a.** Résoudre l'équation $z^4 + z^3 + z^2 + z + 1 = 0$, d'inconnue $z \in \mathbb{C}$.
 - **b.** Soit z une solution de cette équation. On pose $x=z+\frac{1}{z}$. Montrer que x est solution d'une équation simple, puis la résoudre.
- 2. En déduire une expression explicite de $\cos \frac{2\pi}{5}$.

Exercice 25 •••• \longrightarrow Soit $n \in \mathbb{N}$.

Exprimer $\frac{\sin(nx)}{\sin x}$ sous la forme d'un polynôme en $\cos x$.

- **Exercice 26** •••• Simplifier, pour tous $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$,

- **1.** $\sum_{k=0}^{n} \sin(kx)$. **2.** $\sum_{k=0}^{n} \cos(kx+y)$. **3.** $\sum_{k=0}^{n} \binom{n}{k} \cos(kx)$.
- **Exercice 27** •••• Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.
- **1.** $e^z = 1 + i$. **2.** $e^z = -5 12i$. **3.** $e^z + e^{-z} = 1$.

Racines n^{es}

— Exercice 28 •○○○ —

- 1. Déterminer les racines carrées des complexes suivants.
 - **a.** 3 4i.
- **b.** -15 + 8i.
- **c.** 7 24i. **d.** 9 + 40i.
- **e.** 48 2i.

- **2.** Calculer les racines quatrièmes de -119 + 120i.
- **Exercice 29** •••• Résoudre les équations suivantes d'inconnue $z \in \mathbb{C}$.
- **1.** $z^8 3z^4 + 2 = 0$. **2.** $z^6 2\cos\varphi z^3 + 1 = 0$, avec $\varphi \in \mathbb{R}$.

— Exercice 30 ••∘∘ — **У**

Résoudre les équations suivantes d'inconnues $z \in \mathbb{C}$, où $n \in \mathbb{N}^*$.

- **1.** $(z+2)^3=3i$. **2.** $(z-1)^4=4+4i$. **3.** $z^n+1=0$. **4.** $z^n=\overline{z}$.

— Exercice 32 ••○○ — Banque d'exercices CCINP 2025 (84)

- 1. Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- **2.** Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbb{C} de l'équation $z^n = 1$ et préciser leur nombre.
- **3.** En déduire, pour $n \in \mathbb{N}^*$, les solutions dans \mathbb{C} de l'équation $(z+i)^n = (z-i)^n$ et démontrer que ce sont des nombres réels.

— Exercice 33 ••○○ — Banque d'exercices CCINP 2025 (89)

Soit $n \in \mathbb{N}$ tel que n > 2. On pose $z = e^{2i\pi/n}$.

- **1.** On suppose que $k \in [1, n-1]$. Déterminer alors le module et un argument du complexe $z^k - 1$
- **2.** On pose $S = \sum_{k=0}^{n-1} |z^k 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.
- **Exercice 34** •••• Pour tout $n \in \mathbb{N}^*$, simplifier les expressions suivantes.
- 1. $\sum_{\omega \in \mathbb{U}_n} \omega$. 2. $\prod_{\omega \in \mathbb{U}_n} \omega$. 3. $\sum_{\omega \in \mathbb{U}_n} (1+\omega)^n$. 4. $\sum_{\omega \in \mathbb{U}_n} |\omega 1|$.

Exercice 35 •••• On pose $j = \frac{-1 + i\sqrt{3}}{2}$.

- **1.** Calculer $(1+j)^n$ et $(1+j^2)^n$ suivant les valeurs de n.
- 2. Pour z complexe quelconque, comparer

$$(z+1)(z+j)(z+j^2)$$
 et $(1+z)(1+jz)(1+j^2z)$.

- **3.** Soit a, b et c des complexes quelconques.
 - **a.** Calculer $(a + b)(aj + bj^2)(aj^2 + bj)$.
 - **b.** En déduire une factorisation de $(a + bj + cj^2) + (a + bj^2 + cj)^3$.
- **4.** Soit a, b et c des complexes quelconques, on pose x = a + b + c, $y = a + bj + cj^2$ et $z = a + bi^2 + ci$. Calculer $x^3 + y^3 + z^3$.

— Exercice 36 •••∘ — ♀ ✓

- **1.** Calculer $\sum_{k=0}^{n} \binom{n}{k}$, $\sum_{k=0}^{n} \binom{n}{k} j^k$ et $\sum_{k=0}^{n} \binom{n}{k} (j^2)^k$, où $j = e^{2i\pi/3}$.
- **2.** En déduire une expression de $\sum_{k=0}^{\lfloor n/3\rfloor} \binom{n}{3k}$.

Application à la géométrie

Exercice 37 0000 **Exercice 37** Dans chacun des cas suivants, représenter l'ensemble des points M dont l'affixe z vérifie l'égalité proposée.

- 1. |z| = 3.
- **2.** Re(z) = -2.
- **3.** Im(z) = 1.

Exercice 38 •ooo **— \subseteq** On note A, B et C les trois points d'affixes respectives a = 1 + i, b = -i et c = -1 + 2i. Que peut-on dire du triangle ABC?

Exercice 39 $\bullet \circ \circ \circ$ **A** quelle condition nécessaire et suffisante sur z

- 1. z et z^2 sont-ils les affixes de deux vecteurs
 - a. colinéaires?
- **b.** orthogonaux?
- **2.** 1, z et z^2 sont-ils les affixes de trois points alignés?
- **3.** z et \overline{z} sont-ils les affixes de deux vecteurs orthogonaux?
- **4.** $z, \frac{1}{z}$ et z-1 sont-ils les affixes de points situés sur un même cercle de centre O?
- **5.** z, z^2 et z^3 sont-ils les affixes des sommets d'un triangle rectangle en z?
- **6.** z et ses deux racines carrées forment-ils un triangle rectangle en z?

- **1.** MA = MB.
- **2.** $MB = MA\sqrt{2}$.

— Exercice 41 •○○○ —

- **1.** Caractériser géométriquement la similitude $z \mapsto 2(1+i)z 7 4i$.
- 2. Déterminer l'expression de la rotation de centre 1+i et d'angle de mesure $\frac{\pi}{4}$.
- **3.** On note r la rotation de centre 1 et d'angle de mesure $\frac{\pi}{2}$ et s la symétrie centrale de centre 3+i. Caractériser géométriquement $s\circ r$.
- **4.** On note r la rotation de centre 2+i et d'angle de mesure $\frac{\pi}{3}$ et r' la rotation de centre 3-2i et d'angle de mesure $-\frac{\pi}{3}$. Caractériser géométriquement $r' \circ r$.

— Exercice 42 •○○○ — **У**

On considère l'application f qui à un point M d'affixe z associe le point M' d'affixe e^z . Déterminer l'image des droites d'équations x = a et y = b par f.

Exercice 43 •ooo **—** Dans le plan complexe, démontrer que les points d'affixes a, b et c sont alignés si et seulement si

$$a\overline{b} + b\overline{c} + c\overline{a} = b\overline{a} + c\overline{b} + a\overline{c}$$

Exercice 44 •••• Soit a, b, c et d quatre nombres complexes vérifiant

$$a+c=b+d$$
 et $a+ib=c+id$.

Quelle figure forme leur image dans le plan?

— Exercice 45 ••∘∘ —

Vérifier qu'une condition nécessaire et suffisante pour que les points d'affixes a, b et c dans le plan complexe soient les sommets d'un triangle équilatéral est

$$a^2 + b^2 + c^2 - ab - bc - ca = 0$$
.

$$e^{ix} + e^{iy} + e^{iz} = 0.$$

où x, y et z sont des réels.

Indications

Exercice 36. 2. Un découpage des sommes de la question $\mathbf 1$ selon la classe de congruence modulo 3 de l'indice k permet de les exprimer comme des combinaisons linéaires des trois sommes suivantes :

$$\sum_{k=0}^{\lfloor n/3\rfloor} \binom{n}{3k}, \quad \sum_{k=0}^{\lfloor (n-1)/3\rfloor} \binom{n}{3k+1} \quad \text{ et } \quad \sum_{k=0}^{\lfloor (n-2)/3\rfloor} \binom{n}{3k+2}.$$

Éléments de réponses

- $\textbf{Exercice 1.} \ \ \text{Le résultat dépend du reste de l'exposant dans la division euclidienne par 4}.$
 - **1.** -i. **2.** 1. **3.** i. **4.** -1. **5.** 1. **6.** -i. **7.** i.
- Exercice 2. $z_1 = 4$. $z_2 = 7 3i$. $z_3 = -20 28i$. $z_4 = 21 + 20i$. $z_5 = 19 16i$. $z_6 = 29$. $z_7 = 1 i$. $z_8 = \frac{1}{2} + \frac{1}{2}i$. $z_9 = -\frac{3}{5} + \frac{4}{5}i$.
- Exercise 3. 1. 3 + 4i. 2. $-\frac{1}{2} \frac{7}{2}i$. 3. -i.
- Exercice 4. 1. 1-i. 2. -3-2i. 3. -2-i. 4. i. 5. $\frac{4}{5}-\frac{2}{5}i$. 6. 2.
- Exercice 5. 1. $\sqrt{5}$. 2. 5. 3. $\sqrt{65}$. 4. $\sqrt{5}$. 5. $\frac{2}{3}$. 6. $\sqrt{3}$.
- Exercice 6. $z = \frac{8}{5} + \frac{9}{5}i$, $\overline{z} = \frac{8}{5} \frac{9}{5}i$, et $|z| = \sqrt{\frac{29}{5}}$.
- Exercise 7. 1. $(z,t) = \left(\frac{6-9i}{13}, \frac{-16+11i}{13}\right)$. 2. (z,t) = (i,1).
- Exercice 9. 1. $i\mathbb{R}\setminus\{3i\}$. 2. $z\in\mathbb{U}$. 3. $f^{-1}(z)=\frac{3iz-i}{z-3}$.
- Exercice 10. Combiner la formule donnant la somme d'une progression géométrique et l'inégalité triangulaire.
- Exercice 11. Si $m = m'^2 + m''^2$ et $n = n'^2 + n''^2$, alors $mn = (m'n' m''n'')^2 + (m'n'' + m''n')^2$.
- Exercice 12. 1.a. $\{0\}$. 1.b. $\left\{\frac{1}{5}(2+i)\right\}$. 1.c. $\left\{-\frac{1}{2}(3+i)\right\}$. 1.d. $\{3+3i\}$.
 - **2.** $\{i, -3i, 1-4i\}$. **3.a.** $\left\{\frac{3\pm i\sqrt{7}}{2}\right\}$. **3.b.** $\{2\}$. **3.c.** $\{2i, -4+i\}$. **3.c.** $\{\pm i\sqrt{3}\}$.
 - **3.d.** $\left\{\frac{-3 \pm i\sqrt{15}}{6}\right\}$. **3.f.** $\left\{\frac{i-9}{3}, \frac{4i-1}{2}\right\}$. **4.a.** $\left\{\pm i, \pm i\sqrt{2}\right\}$. **4.b.** $\left\{\pm 6, \pm 2i\right\}$.
 - **5.a.** $\{(-1,4i)\}$. **5.b.** $\{(1+2i,1-2i),(1-2i,1+2i)\}$
 - **5.c.** $\{(-2+i, -1+2i), (-1+2i, -2+i)\}.$
 - **6.a.** $\left\{ \frac{-1-i}{2} \right\}$. **6.b.** $\left\{ -1-2i, \frac{1-i}{2} \right\}$. **6.c.** $\{-i\}$.
- Exercise 13. p = -(1 + 2i + 3 5i) = -4 + 3i et q = (1 + 2i)(3 5i) = 13 + i.
- Exercice 14. $\lambda < \frac{7}{4}$.

Exercice 15. 1.a. $(\sqrt{2}-1)e^{i\pi}$. 1.b. $5e^{-i\frac{\pi}{2}}$. 1.c. $\sqrt{5}e^{-i\operatorname{Arctan}(1/2)}$. 1.d. $(2\sqrt{3})^{19}e^{-i\frac{\pi}{6}}$. $2\cos^{-}e^{i\frac{\theta}{2}}$ si $0 \le \theta < \pi$

1.e.
$$\frac{1}{\sqrt{5}} e^{i(\pi + \operatorname{Arctan}(2/11))}$$
. 2. $-2^{999} - 2^{999} \sqrt{3}i$. 3.
$$\begin{cases} 2\cos\frac{\theta}{2} e^{i\frac{\theta}{2}} & \text{si } 0 \leqslant \theta < \pi \\ -2\cos\frac{\theta}{2} e^{i(\frac{\theta}{2} + \pi)} & \text{si } \pi < \theta \leqslant 2\pi \\ & \text{impossible} & \text{si } \theta = \pi. \end{cases}$$

- Exercice 16. 1. $n \in 4\mathbb{Z}$. 2. $n \in 3 + 6\mathbb{Z}$.
- Exercice 17. $\operatorname{Re}\left(\frac{1}{1-z}\right) = \frac{1}{2}$.
- Exercice 18. $1 + e^{i\theta} + e^{2i\theta} = e^{i\theta} (1 + e^{i\theta} + e^{-i\theta}) = (1 + 2\cos\theta)e^{i\theta}$, il reste alors à gérer le signe de $1 + 2\cos\theta$.
- Exercice 19. Passer au carré des modules et utiliser $z\overline{z} = 1$, pour $z \in \mathbb{U}$.
- Exercice 20. La réciproque est $z \longmapsto \frac{z-\omega}{1-\overline{\omega}z}$.
- Exercice 21. 1.a. $\frac{1}{4}\sin(5x) \frac{1}{4}\sin(3x) + \frac{1}{2}\sin(x)$.
 - **1.b.** $-\frac{1}{8}\sin(9x) + \frac{3}{8}\sin(5x) \frac{1}{8}\sin(3x) \frac{3}{8}\sin(x)$. **2.a.** $\frac{5}{12}$. **2.b.** $\frac{\pi}{32}$
- Exercice 22. 1. $\pm \sqrt{2} e^{i\pi/12} = \pm \sqrt{\frac{2+\sqrt{3}}{2}} \pm i\sqrt{\frac{2-\sqrt{3}}{2}}$. 2. $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2}$
- Exercice 23. 1. $\cos(5x) = 16\cos^5 x 20\cos^3 x + 5\cos x$.
 - **2.a.** $\frac{5+\sqrt{5}}{8}$. **2.b.** $\frac{1+\sqrt{5}}{4}$. **2.c.** $\frac{\sqrt{10-2\sqrt{5}}}{4}$.
- Exercice 24. 1.a. L'équation équivant à $\frac{z^5-1}{z-1}=0$ et l'ensemble des solutions est $\left\{e^{\pm\frac{2i\pi}{5}}, e^{\pm\frac{4i\pi}{5}}\right\}$. 1.b. x est solution de $X^2+X-1=0$, dont les solutions sont $\frac{-1\pm\sqrt{5}}{2}$.
 - 2. $\frac{\sqrt{5}-1}{4}$
- Exercice 25. $\sum_{k=0}^{\lfloor n/2 \rfloor} {n \choose 2p+1} (X^2-1)^p X^{n-2p}$.
- Exercice 26. 1. $\begin{cases} 0 & \text{si } x \in 2\pi \mathbb{Z} \\ \sin\left(\frac{nx}{2}\right) \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} & \text{sinon.} \end{cases}$
 - 2. $\begin{cases} (n+1)\cos y & \text{si } x \in 2\pi\mathbb{Z} \\ \cos\left(\frac{n}{2}x+y\right)\frac{\sin\left(\frac{n+1}{2}x\right)}{\sin\frac{x}{2}} & \text{sinon.} \end{cases}$ 3. $2^n\left(\cos\frac{x}{2}\right)^n\cos\frac{nx}{2}$.
- Exercice 27. 1. $\frac{\ln 2}{2} + i\frac{\pi}{4} + 2i\pi\mathbb{Z}$. 2. $\ln 13 + i\pi + i \operatorname{Arctan} \frac{12}{5} + 2i\pi\mathbb{Z}$. 3. $\pm i\frac{\pi}{3} + 2i\pi\mathbb{Z}$.
- Exercice 28. 1.a. $\pm (2-i)$. 1.b. $\pm (1+4i)$. 1.c. $\pm (4-3i)$. 1.d. $\pm (5+4i)$. 2. $\pm (3+2i)$ et $\pm (2-3i)$.
- Exercice 29. 1. $\{\pm 1, \pm i, \pm \sqrt[4]{2}, \pm i \sqrt[4]{2}\}$. 2. $\{\exp\left(i\frac{2k\pi \pm \varphi}{3}\right) \mid k \in [0, 2]]\}$.

Exercice 30. 1.
$$\left\{ \sqrt[3]{3} \exp\left(\frac{i\pi(1+4k)}{6}\right) - 2 \mid k \in [0,2] \right\}$$
.

2.
$$\left\{2^{5/8} \exp\left(\frac{i\pi(8k+1)}{16}\right) + 1 \mid k \in [0,3]\right\}$$
. 3. $\left\{\exp\left(\frac{i\pi(2k+1)}{n}\right) \mid k \in [0,n-1]\right\}$.

4. $\left\{0\} \cup \left\{\exp\left(\frac{2ik\pi}{n+1}\right) \mid k \in [0,n]\right\}$ si $n \ge 2$.

4.
$$\left\{ \begin{array}{c} \mathbb{R} & \text{si } n = 1 \\ \{0\} \cup \left\{ \exp\left(\frac{2ik\pi}{n+1}\right) \mid k \in \llbracket 0, n \rrbracket \right\} & \text{si } n \geqslant 2. \end{array} \right.$$

Non. Précisément, $e^{i\theta} \in \bigcup_{n \to \infty} \mathbb{U}_n \iff \frac{\theta}{\pi} \in \mathbb{Q}$.

Exercice 31. Non.

Exercice 34. 1.
$$\begin{cases} 1 & \text{si } n=1 \\ 0 & \text{sinon} \end{cases}$$
 2. $(-1)^{n-1}$. 3. $2n$. 4. $2\frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$.

Exercice 36. 1.
$$2^n$$
, $(1+j)^n$ et $(1+j^2)^n$. 2. $\frac{1}{3}(2^n+2\cos\frac{n\pi}{3})$.

Exercice 37. 1. Cercle de centre
$$O$$
 et de rayon 3. **2.** Droite d'équation $x = -2$.

3. Droite d'équation y = 1.

Exercice 38. Triangle isocèle et rectangle en A.

Exercice 39. 1.a.
$$z \in \mathbb{R}$$
. 1.b. $z \in i\mathbb{R}$. 2. $z \in \mathbb{R}$. 3. $z = r e^{\pm i\pi/4}$ avec $r \in \mathbb{R}^*$. 4. $e^{\pm i\pi/3}$.

5.
$$z = 0$$
 ou $z = 1$ ou $Re(z) = -1$. **6.** $z \in \mathbb{U} \cup \{0\}$.

Exercice 40. 1. Droite d'équation x=3. **2.** Cercle de centre (-3,0) et de rayon $4\sqrt{2}$.

Exercice 41. 1. Similitude de centre 3-2i, de rapport $2\sqrt{2}$ et d'angle $\frac{\pi}{4}$.

2.
$$z \longmapsto \frac{1+i}{\sqrt{2}}z + 1 + i(1-\sqrt{2}).$$

3.
$$s \circ r : z \longmapsto -iz + 5 + 3i$$
 est la rotation de centre $4 - i$ et d'angle $-\frac{\pi}{2}$

4.
$$r' \circ r : z \longmapsto z + \frac{1+3\sqrt{3}}{2} + \frac{\sqrt{3}-3}{2}i$$
 est la translation de vecteur $\frac{1+3\sqrt{3}}{2} + \frac{\sqrt{3}-3}{2}i$.

Exercice 42. Cercle de centre O et de rayon e^a. Demi-droite d'origine O et formant un angle b avec l'axe des abscisses.

Exercice 44. ABCD est un losange.

Exercice 46. Sommets d'un triangle équilateral inscrit dans le cercle unité.