Fonctions usuelles

Cahier de calcul : fiches 9 à 11.

Logarithme, exponentielle et puissances

Exercice 1 •••• Étudier chacune des fonctions suivantes.

1.
$$x \longmapsto e^{1/\ln x}$$

$$2. x \longmapsto \ln(e^x + e^{-x}).$$

1.
$$x \mapsto e^{1/\ln x}$$
. 2. $x \mapsto \ln(e^x + e^{-x})$. 3. $x \mapsto \left(1 + \frac{1}{x}\right)^x$.

$$4. \ x \longmapsto \frac{x^3}{x^2 - 3}.$$

$$5. \ x \longmapsto \ln \frac{1+x}{1-x}.$$

4.
$$x \longmapsto \frac{x^3}{x^2 - 3}$$
. **5.** $x \longmapsto \ln \frac{1 + x}{1 - x}$. **6.** $x \longmapsto \sqrt{\frac{\ln|x|}{x}}$.

7.
$$x \mapsto \sqrt[4]{x^2 - 2x - 3}$$

7.
$$x \mapsto \sqrt[4]{x^2 - 2x - 3}$$
. **8.** $x \mapsto \frac{x}{4} + \frac{1}{3}\sqrt{|x^2 - 16|}$. **9.** $x \mapsto x^{x^3}$.

9.
$$x \longmapsto x^{x^3}$$

Exercice 2 • $\circ \circ \circ$ **Où l'on démontre que** -1 = 1...

Commenter la « démonstration » suivante.

$$-1 = (-1)^1 = (-1)^{\frac{2}{2}} = ((-1)^2)^{\frac{1}{2}} = (1)^{\frac{1}{2}} = 1.$$

Exercice 3 •••• Déterminer les limites suivantes.

1.
$$(x^x)^x$$
 en 0^+

2.
$$x^{x^x}$$
 en 0^+

3.
$$\frac{(x^x)^x}{x^{x^x}}$$
 en $+\infty$

1.
$$(x^x)^x$$
 en 0^+ . **2.** x^{x^x} en 0^+ . **3.** $\frac{(x^x)^x}{x^{x^x}}$ en $+\infty$. **4.** $\frac{x-1}{x}e^{1/x}$ en 0^- .

5.
$$\frac{a^{b^x}}{b^{a^x}}$$
 en $+\infty$, où $1 < a < b$. **6.** $\frac{a^{a^x}}{x^{x^a}}$ en $+\infty$, où $a > 1$.

6.
$$\frac{a^{a^x}}{r^{x^a}}$$
 en $+\infty$, où $a > 1$.

Exercice 4 •••• Résoudre les (in)équations suivantes.

1.
$$2e^x - 35e^{-x} = 9$$
. 2

1.
$$2e^x - 35e^{-x} = 9$$
. **2.** $2(\ln x)^2 = 12 + 5\ln x$. **3.** $x^x = \frac{3}{4}\sqrt{6}$.

3.
$$x^x = \frac{3}{4}\sqrt{6}$$
.

4.
$$(x^x)^x = x^{x^x}$$

5.
$$\ln|x+1| - \ln|2x+1| \le \ln 2$$
.

4.
$$(x^x)^x = x^{x^x}$$
. **5.** $\ln|x+1| - \ln|2x+1| \le \ln 2$. **6.** $x - \frac{x^2}{2} \le \ln(1+x) \le x$.

7.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$
.

3.
$$\ln(-x-3) + \ln(x+4) \ge \ln(x-5)$$

7.
$$x^{\sqrt{x}} = (\sqrt{x})^x$$
. 8. $\ln(-x-3) + \ln(x+4) \ge \ln(x-5)$. 9. $\ln(-x-3) \ge \ln\left(\frac{x-5}{x+4}\right)$.

Exercice 5 •••• Résoudre le système $\begin{cases} 2\frac{\ln y}{\ln x} + 2\frac{\ln x}{\ln y} = -5 \\ xy = e. \end{cases}$

Exercice 6 •000 — Comparer les réels e^{π} et π^{e} .

— Exercice 7 •○○○ —

- **1.** Soit $a \in \mathbb{R}_+^*$. Étudier la fonction $x \longmapsto a^x \text{ sur } \mathbb{R}$.
- **2.** Résoudre l'équation $2^x + 3^x = 5$, d'inconnue $x \in \mathbb{R}$.

— Exercice 8 •○○○ —

- **1.** Soit I un intervalle, $u \in \mathcal{D}(I,\mathbb{R})$ strictement positive et $v \in \mathcal{D}(I,\mathbb{R})$. Montrer que u^v est dérivable sur \mathbb{R} et calculer sa dérivée.
- **2.** On note f la fonction $x \mapsto x^x \text{ sur } \mathbb{R}^*_+$.
 - **a.** Étudier la fonction f.
 - **b.** Déterminer une équation de la tangente de f en 1, ainsi que la position relative du graphe de f par rapport à cette tangente.

Exercice 9 •••• Montrer que, pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$, $e^x \geqslant \sum_{k=0}^n \frac{x^k}{k!}$.

Exercice 10 •••• Soit $\alpha \in [0,1]$.

- **1.** Montrer que, pour tout $x \in \mathbb{R}_+$, $(1+x)^{\alpha} \le 1 + \alpha x$.
- **2.** En déduire que, pour tout $n \in \mathbb{N}^*$, $\prod_{k=1}^n \left(1 + \frac{\alpha}{k}\right) \ge (n+1)^{\alpha}$.

— Exercice 11 ••○○—

- **1.** Étudier la monotonie de $t \mapsto \frac{(1+t)\ln(1+t)}{t}$ sur \mathbb{R}_+^* .
- **2.** En déduire, pour tous a, b > 0 avec $a \le b$, la monotonie de $x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$ sur \mathbb{R}^*_{\perp} .
- **3.** En déduire que, pour tous a, b > 0, $\ln\left(1 + \frac{a}{b}\right) \ln\left(1 + \frac{b}{a}\right) \le \ln^2 2$.

Fonctions trigonométriques

— Exercice 12 •○○○

- 1. En considérant $\frac{\pi}{3} \frac{\pi}{4}$, déterminer les valeurs de $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$ et $\tan \frac{\pi}{12}$.
- 2. Calculer $\tan \frac{\pi}{8}$, $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.
- Exercice 13 •○○○ Résoudre graphiquement les inéquations suivantes, d'inconnue $x \in \mathbb{R}$,

1.
$$\cos x \geqslant \frac{1}{\sqrt{2}}$$
.

1.
$$\cos x \geqslant \frac{1}{\sqrt{2}}$$
. **2.** $\sin x > -\frac{\sqrt{3}}{2}$. **3.** $|\tan x| \leqslant 1$.

3.
$$|\tan x| \le 1$$

- **Exercice 14** •••• Montrer que, pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $|\sin(nx)| \leq n|\sin x|$.
- **Exercice 15** •••∘— Montrer que la fonction f définie sur [0,1] par $f(x) = (1 - x)\sin\frac{\pi}{x}$

est bornée. Atteint-elle ses bornes?

- Exercice 16 ••∘∘— Résoudre les équations suivantes, d'inconnue $x \in \mathbb{R}$,
- **1.** $\sin x + \sin(2x) = 0$. **2.** $\tan(2x) = 3\tan x$.
- 3. $2\sin x + \sin(3x) = 0$.

- **4.** $3 \tan x = 2 \cos x$.
- **5.** $\cos x = 1 + \sqrt{3} \sin x$.
- **Exercice 17** ••∘∘ Déterminer l'ensemble de définition de la fonction $x \longmapsto \ln\left(\tan\frac{x\pi}{2}\right).$
- **Exercice 18** •••• Étudier chacune des fonctions suivantes :

1.
$$x \mapsto \frac{\tan(2x)}{\tan x}$$

1.
$$x \mapsto \frac{\tan(2x)}{\tan x}$$
. 2. $x \mapsto \sin(3x) + 3\sin x$.

Exercice 19 •••• Simplifier, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^{n} \sin \frac{\pi}{2^k} \sin \frac{3\pi}{2^k}$.

— Exercice 20 •○○○ —

- **1.** Montrer que, pour tout $x \in \left[0, \frac{\pi}{2}\right]$, $\tan x > x$.
- 2. Montrer que la fonction $x \mapsto \frac{x}{\sin x}$ est bijective de $\left[0, \frac{\pi}{2}\right]$ sur son image que l'on précisera.

— Exercice 21 ••∘∘—

- **1.** Étudier la fonction $x \mapsto \cos^3 x + \sin^3 x$.
- **2.** Résoudre l'équation $\cos^3 x + \sin^3 x = 1$, d'inconnue $x \in \mathbb{R}$.

— Exercice 22 •••∘—

- **1.** Étudier les variations de la fonction $x \mapsto 2^{-x}x$ sur \mathbb{R} .
- **2.** En déduire les variations de $x \mapsto 2^{\sin x} + 2^{\cos x} \operatorname{sur} \left[0, \frac{\pi}{4}\right]$
- **3.** En déduire que, pour tout $x \in \mathbb{R}$, $3 \le 2^{|\sin x|} + 2^{|\cos x|} \le 2^{1 + \frac{1}{\sqrt{2}}}$
- **Exercice 23** •••• Simplifier $Arctantan\left(-\frac{11\pi}{4}\right)$.
- Tracer le graphe de la fonction $x \mapsto \operatorname{Arctan}(\tan x)$. — Exercice 24 •○○○ —
- Exercice 25 ••∘∘— Étudier chacune des fonctions suivantes.
- 1. $x \mapsto x \operatorname{Arctan} \frac{1}{x}$. 2. $x \mapsto x \operatorname{Arctan} \frac{1}{x-1}$.
- Exercice 26 •○○○ $x \in \mathbb{R}$.

Simplifier $\cos(\arctan x)$ et $\sin(\arctan x)$, pour tout

— Exercice 27 ••∘∘ préciser :

Résoudre les équations suivantes – dans un domaine à

- 1. Arcsin $x = Arccos \frac{4}{5}$.
- **2.** Arcsin(2x) = Arccos x.
- **3.** Arcsin(tan x) = x.
- **4.** Arctan(2x) + Arctan(3x) = $\frac{\pi}{4}$.

Exercice 28 ••∘∘ ——

Simplifier les expressions suivantes.

- 1. $\operatorname{Arccos}(-x) + \operatorname{Arccos} x$. 2. $\operatorname{Arctan} \sqrt{\frac{1-x}{1+x}}$.

- 3. Arctan $\frac{x}{\sqrt{1-x^2}}$. 4. Arccos(th x) + 2 Arctan(e^x)
- **5.** Arctan $(\sqrt{x^2+1}-x)$. **6.** Arctan (e^x) Arctan $(th(\frac{x}{2}))$

Exercice 29 ••••

- **1.** Simplifier, pour tout $k \in \mathbb{N}$, $\operatorname{Arctan}(k+1) \operatorname{Arctan} k$.
- **2.** En déduire $\lim_{n \to +\infty} \sum_{k=0}^{n} \operatorname{Arctan} \frac{1}{k^2 + k + 1}$.

Exercice 30 •••• La suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ est définie par

$$F_0 = 0, \quad F_1 = 1$$

 $F_0 = 0$, $F_1 = 1$ et $\forall n \in \mathbb{N}$, $F_{n+2} = F_n + F_{n+1}$.

- **1.** Montrer que, pour tout $n \in \mathbb{N}$, $F_{n+1}^2 F_n F_{n+2} = (-1)^n$ (identité de Cassini).
- **2.** En déduire que, pour tout $n \in \mathbb{N}^*$, Arctan $\frac{1}{F_{2n}} = \operatorname{Arctan} \frac{1}{F_{2n+1}} + \operatorname{Arctan} \frac{1}{F_{2n+2}}$.
- 3. En déduire l'existence et la valeur de $\lim_{n\to+\infty}\sum_{k=0}^{\infty}\operatorname{Arctan}\frac{1}{F_{2k+1}}$.

Exercice 31 •••• Formule de Machin

- 1. Montrer que $\frac{\pi}{4} = \operatorname{Arctan} \frac{1}{2} + \operatorname{Arctan} \frac{1}{3}$.
- **2.** Calculer $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.
- **3. a.** Exprimer $\tan(4x)$ en fonction de $\tan x$, pour tout $x \in \left] -\frac{\pi}{8}, \frac{\pi}{8} \right[+\frac{\pi}{4}\mathbb{Z}.$
 - **b.** En déduire la formule de Machin $\frac{\pi}{4} = 4 \operatorname{Arctan} \frac{1}{5} \operatorname{Arctan} \frac{1}{239}$

La formule de Machin, découverte par John Machin en 1706, a longtemps servi à calculer les premières décimales de π , dans la mesure où l'on sait calculer assez facilement les arc tangentes. Selon cette terminologie, la formule de la question ${\bf 1}$ est appelé une formulede type Machin et il en existe beaucoup d'autres, e.g. $\frac{\pi}{4} = 2 \operatorname{Arctan} \frac{1}{3} + \operatorname{Arctan} \frac{1}{7}$.

Fonctions hyperboliques

Exercice 32 •○○○ Montrer que, pour tout $x \in \mathbb{R}$,

- 1. $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y$.
- 2. $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y$.
- 3. $th(x+y) = \frac{th x + th y}{1 + th x th y}$

Exercice 33 •ooo Montrer que la fonction $x \mapsto \frac{1}{\cosh x}$ possède un unique point fixe.

Exercice 34 •••• Factoriser la somme $\sum_{k=0}^{n} \operatorname{ch}(2kx)$, pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$.

— Exercice 35 •••∘—

- **1.** Que vaut $\lim_{x\to 0} \frac{\operatorname{th} x}{x}$?
- **2.** Montrer que, pour tout $x \in \mathbb{R}$, $\operatorname{th}(2x) = \frac{2 \operatorname{th} x}{1 + \operatorname{th}^2 x}$.
- **3.** En déduire que, pour tout $x \in \mathbb{R}^*$,

$$\lim_{n\to +\infty} \prod_{k=1}^n \left(1+ \operatorname{th}^2\!\left(\frac{x}{2^k}\right)\right) = \frac{x}{\operatorname{th} x}.$$

Exercice 36 •••• Montrer que si $x = \ln\left(\tan\left(\frac{\pi}{4} + \frac{y}{2}\right)\right)$, alors

$$th \frac{x}{2} = \tan \frac{y}{2}, \quad th x = \sin y \quad et \quad ch x = \frac{1}{\cos y}.$$

Exercice 37 •••• Montrer que, pour tout $x \in \mathbb{R}$, $|\operatorname{th} x| \geqslant \frac{|x|}{1+|x|}$.

Indications

Exercice 14. Procéder par récurrence.

Exercice 16. 1. Imparité ou duplication du sinus. 2. Duplication de la tangente.

3. Triplication du sinus. 4. Se ramener à des sinus.

5. Se ramener à un cosinus en divisant par 2.

Exercice 18. 1.
$$f(x) = 1 + \frac{1}{\cos(2x)}$$
.

Exercice 21. 1.
$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4}\right)$$
.

Exercice 22. 2. Posons
$$f: x \longmapsto 2^{\sin x} + 2^{\cos x}$$
 et $g: x \longmapsto 2^{-x}x$.

Alors
$$f'(x) = \ln 2 \times 2^{\sin x + \cos x} (g(\cos x) - g(\sin x))$$

Exercice 28. Il faut dériver...

Exercice 29. 1. Calculer la tangente.

Éléments de réponses

Exercice 3. 1. 1. 2. 0. 3. 0. 4. 0. 5. $+\infty$. 6. $+\infty$.

Exercice 4. 1.
$$\{\ln 7\}$$
. 2. $\{e^{-3/2}, e^4\}$. 3. $\{\frac{3}{2}\}$. 4. $\{1; 2\}$.

5.
$$]-\infty, -1[\ \cup\]-1, -\frac{3}{5}]\ \cup\ [-\frac{1}{2}, +\infty[$$
. **6.** \mathbb{R}_+ . **7.** $\{1;4\}$. **8.** \emptyset . **9.** $]-\infty, -7[$.

Exercice 5.
$$\{(e^{-1}, e^2), (e^2, e^{-1})\}$$
.

Exercice 6. $e^{\pi} > \pi^{e}$.

Exercice 7. 2. {1}.

Exercice 11. 1. Strictement croissante. 2. Strictement décroissante.

Exercice 12. 1.
$$\cos \frac{\pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4}$$
, $\sin \frac{\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4}$ et $\tan \frac{\pi}{12} = 2 - \sqrt{3}$.

2.
$$\tan \frac{\pi}{8} = \sqrt{2} - 1$$
, $\cos \frac{\pi}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$ et $\sin \frac{\pi}{8} = \frac{\sqrt{2 - \sqrt{2}}}{2}$.

Exercice 13. 1.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right] + 2\pi \mathbb{Z}$$
. 2. $\left[-\frac{\pi}{3}, \frac{4\pi}{3} \right] + 2\pi \mathbb{Z}$. 3. $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right] + \pi \mathbb{Z}$.

Exercice 16. 1.
$$\pi \mathbb{Z} \cup \frac{2\pi}{3} \mathbb{Z}$$
. 2. $\left\{0, \pm \frac{\pi}{6}\right\} + \pi \mathbb{Z}$. 3. $\pi \mathbb{Z}$. 4. $\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\} + 2\pi \mathbb{Z}$.

5.
$$\left\{0, -\frac{2\pi}{3}\right\} + 2\pi \mathbb{Z}.$$

Exercice 17. $]0,1[+2\mathbb{Z}.$

Exercice 18. 1. f est définie sur $\left]0, \frac{\pi}{4}\right[+\frac{\pi}{4}\mathbb{Z}, \pi$ -périodique et impaire, $f'(x) = \frac{2\sin(2x)}{\cos^2(2x)}$ et $\lim_{0} f = 2, \lim_{\frac{\pi}{4}} f = +\infty, \lim_{\frac{\pi}{4}} f = -\infty, \lim_{\frac{\pi}{4}} f = 0.$

2. f est définie sur \mathbb{R} , 2π -périodique et paire,

$$f'(x) = 3(\cos(3x) + \cos x) = 12\cos x \left(\cos x - \frac{1}{\sqrt{2}}\right) \left(\cos x + \frac{1}{\sqrt{2}}\right).$$

Exercice 19. Par télescopage

$$\sum_{k=1}^{n} \sin \frac{\pi}{2^k} \sin \frac{3\pi}{2^k} = \frac{1}{2} \sum_{k=1}^{n} \cos \frac{\pi}{2^{k-1}} - \cos \frac{\pi}{2^{k-2}} = \frac{1}{2} \left(\cos \frac{\pi}{2^{n-1}} - 1\right).$$

Exercice 21. 2. $\{0, \frac{\pi}{2}\} + 2\pi \mathbb{Z}$.

Exercice 23. $\frac{\pi}{4}$.

Exercice 24. $f: x \mapsto \operatorname{Arctan}(\tan x)$ est π -périodique et f(x) = x, pour tout $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Exercice 26. $\cos(\operatorname{Arctan} x) = \frac{1}{\sqrt{x^2 + 1}}$ et $\sin(\operatorname{Arctan} x) = \frac{x}{\sqrt{x^2 + 1}}$.

Exercice 27. 1. $\frac{3}{5}$. 2. $\frac{1}{\sqrt{5}}$. 3. 0. 4. $\frac{1}{6}$.

Exercice 28. 1. π . 2. $\frac{\arccos x}{2}$. 3. $\arcsin x$. 4. π . 5. $\frac{\pi}{4} - \frac{\arctan x}{2}$. 6. $\frac{\pi}{4}$.

Exercise 29. **1.** Arctan(k+1) – Arctan $k = Arctan \frac{1}{k^2 + k + 1}$. **2.** $\frac{\pi}{2}$.

Exercice 30. 3. $\frac{\pi}{2}$

Exercice 31. 2. Arctan $\frac{1}{2}$ + Arctan $\frac{1}{5}$ + Arctan $\frac{1}{8}$ = $\frac{\pi}{4}$.

Exercice 34. $\operatorname{ch}(nx) \frac{\operatorname{sh}((n+1)x)}{\operatorname{sh} x}$.

Exercice 35. 1. 1.