Révisions et compléments pour le calcul algébrique

Banque CCINP: Ø. **Cahier de calcul :** fiches 1 à 7.

Puissances, valeurs absolues et inégalités

Exercice 1 •••• Simplifier, pour tout $n \in \mathbb{N}$, les expressions suivantes :

1.
$$3^{n+2} - 3^{n+1} - 7 \times 3^n + 5 \times 3^{n-1}$$

1.
$$3^{n+2} - 3^{n+1} - 7 \times 3^n + 5 \times 3^{n-1}$$
. **2.** $\frac{6^3 \times 2^{-5}}{4^2 \times 12^{-4}}$. **3.** $\frac{5^n \times 12^2}{10^n \times 6^4}$.

4.
$$\frac{16^{n+1} + (-4)^{2n+1} + (-2)^{4n}}{8^n}$$
. **5.** $\frac{4^n 3^{2n} - 1}{2^n 3^n + 1}$. **6.** $\frac{32 \times 8^{n-1}}{2^{2n+2} - 4^n}$.

5.
$$\frac{4^n 3^{2n} - 1}{2^n 3^n + 1}$$
. 6. $\frac{32 \times 8^{n-1}}{2^{2n+2} - 4^n}$

— Exercice 2 •○○○ **— ☑** Simplifier les écritures suivantes.

1.
$$\sqrt{(1-\sqrt{2})^2} + \sqrt{(2-\sqrt{2})^2}$$

1.
$$\sqrt{(1-\sqrt{2})^2} + \sqrt{(2-\sqrt{2})^2}$$
. **2.** $(\sqrt{7-2\sqrt{6}} + \sqrt{7+2\sqrt{6}})^2$.

3.
$$\left(\sqrt{3-2\sqrt{2}}-\sqrt{3+2\sqrt{2}}\right)^2$$
. **4.** $\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}+\frac{3}{\sqrt{3}+\sqrt{2}}$.

4.
$$\frac{\sqrt{6}}{\sqrt{3}-\sqrt{2}}+\frac{3}{\sqrt{3}+\sqrt{2}}$$

Exercice 3 •ooo **Soit** $x, y \in \mathbb{R}$.

Déterminer en fonction de x, y et |x-y| une expression explicite

- **1.** de $\max\{x,y\} + \min\{x,y\}$ et $\max\{x,y\} \min\{x,y\}$,
- **2.** puis de $\max\{x,y\}$ et $\min\{x,y\}$.

— Exercice 4 ••○○ — Proposer un encadrement des quantités suivantes.

1.
$$\frac{2x^2 - x + 1}{x^2 + \sqrt{x + 2} + 3}$$
 pour $x \in [-1, 1]$. **2.** $\frac{x - y^2 + 3}{x^2 + y^2 - y}$ pour $x, y \in [1, 2]$.

2.
$$\frac{x-y^2+3}{x^2+y^2-y}$$
 pour $x, y \in [1, 2]$

— Exercice 5 ••○○ —

- **1.** Quelle est la valeur minimale sur $[1, +\infty]$ de la fonction $x \mapsto x^2 x + 1$?
- **2.** En déduire un exemple de réel λ pour lequel, pour tout $x \ge 1$, $\frac{x + \sqrt{x}}{x^2 x + 1} \le \lambda x$.

Exercice 6 •••• \square Résoudre les équations suivantes d'inconnue x réelle.

1.
$$|4-x|=x$$
.

1.
$$|4-x|=x$$
. **2.** $|x^2+x-3|=|x|$. **3.** $|x+2|+|3x-1|=4$.

3.
$$|x+2| + |3x-1| = 4$$

4.
$$\sqrt{1-2x} = |x+7|$$

5.
$$x|x| = 3x + 2$$

4.
$$\sqrt{1-2x} = |x+7|$$
. **5.** $x|x| = 3x+2$. **6.** $x+5 = \sqrt{x+11}$.

7.
$$x = 1 + \sqrt{x^2 - 2}$$
.

8.
$$x + |x| = \frac{2}{x}$$

7.
$$x = 1 + \sqrt{x^2 - 2}$$
. **8.** $x + |x| = \frac{2}{x}$. **9.** $\sqrt{x} - 2 - \frac{7\sqrt{x} - 10}{\sqrt{x} + 2} = 0$.

Exercice 7 •••• Résoudre en fonction du paramètre $a \in \mathbb{R}$ l'équation, d'inconnue x dans \mathbb{R} ,

$$\sqrt{x} + \sqrt{x+1} = a$$

Exercice 8 •••• Résoudre les inéquations suivantes d'inconnue $x \in \mathbb{R}$.

1.
$$|x^2 - 6x + 4| \le 1$$
. **2.** $2x - 5 < |x + 2|$. **3.** $|3x - 5| \le |2x + 3|$.

2.
$$2x - 5 < |x + 2|$$

3.
$$|3x-5| \le |2x+3|$$

4.
$$\frac{x}{x+1} \le \frac{x+2}{x+3}$$

5.
$$\frac{x+5}{x^2-1} \geqslant 1$$

4.
$$\frac{x}{x+1} \le \frac{x+2}{x+3}$$
. **5.** $\frac{x+5}{x^2-1} \ge 1$. **6.** $x + \frac{1}{x} \le |x+4| + 3$.

7.
$$x + 3 \le \sqrt{x + 5}$$
.

7.
$$x + 3 \le \sqrt{x + 5}$$
. **8.** $\sqrt{|x + 2|} \le |x - 10|$. **9.** $\sqrt{x^2 - 1} < 2 - x$.

9.
$$\sqrt{x^2-1} < 2-x$$
.

Exercice 9 •••• Soit $x, y \ge 0$.

- **1.** Montrer que $\sqrt{x+y} \leqslant \sqrt{x} + \sqrt{y}$.
- **2.** En déduire que, si $x \ge y$, $\sqrt{x} \sqrt{y} \le \sqrt{x y}$
- **3.** En déduire que $|\sqrt{x} \sqrt{y}| \le \sqrt{|x-y|}$.

Exercice 10 •••• Soit x, y et z des réels.

- 1. Montrer l'inégalité triangulaire et étudier le cas d'égalité.
- **2.** Montrer que $xy \leqslant \frac{x^2 + y^2}{2}$ avec égalité si et seulement si x = y.
- **3.** Montrer que $(x+y)^2 \le 2(x^2+y^2)$ avec égalité si et seulement si x=y.
- **4.** Montrer que $|x| + |y| \le |x + y| + |x y|$ avec égalité si et seulement si |x| = |y|.
- **5.** Montrer que $xy + yz + xz \le x^2 + y^2 + z^2$ avec égalité si et seulement si x = y = z.

— Exercice 11 ••∘∘ — ♀

1. Soit $(x,y) \in \mathbb{R}^2$ tel que $1 \le |x-1| \le 2$ et $3 \le |y-1| \le 4$. Montrer que

$$1 \leqslant |x - y| \leqslant 6.$$

2. Soient trois réels x, y et z tels que $|x-1| \le 2, |y-2| \le 1$ et $|z+1| \le 1$. Montrer

$$|x - y - z| \le 4.$$

Sommes

— Exercice 12 •○○○ — **У**

- 1. Soit un entier $n \ge 10$. Écrire en extension les sommes et les produits suivants à l'aide de « ... ».
 - **a.** $\prod_{k=0}^{n} k$. **b.** $\prod_{k=0}^{n} (k+2)$. **c.** $\sum_{k=0}^{n-1} j$. **d.** $\sum_{k=0}^{n-1} \frac{(i+1)^2}{n}$. **e.** $\prod_{k=0}^{n+1} k^{k+1}$.
- **2.** Soit x un réel et n un entier tel que $n \ge 24$. Exprimer les réels suivants à l'aide du symbole \sum .
 - **a.** $2^2 + 2^3 + \ldots + 2^n$.
- **b.** $2^2 + 3^2 + \ldots + n^2$
- **c.** $n^2 + n^3 + \ldots + n^n$.

- **d.** $2^2 + 3^3 + \ldots + n^n$.
- **e.** $1 + x + \frac{x^2}{2} + \frac{x^3}{2!} + \ldots + \frac{x^n}{n!}$. **f.** $1 + 3 + 5 + 7 + \ldots + 53$.
- **g.** $8 + 10 + 12 + 14 + \ldots + 162$. **h.** $1 + 2x + 3x^2 + 4x^3 + \ldots + 57x^{56}$.
- i. $6x + 12x^2 + 20x^3 + \ldots + 1190x^{33}$. j. $\frac{1}{2+\sqrt{2}} + \frac{1}{3\sqrt{2}+2\sqrt{3}} + \ldots + \frac{1}{100\sqrt{99}+99\sqrt{100}}$.

— Exercice 13 •○○○ — **У**

Soit $(a_k)_{1 \leq k \leq n}$, $(b_k)_{1 \leq k \leq n}$ et $(x_{i,j})_{1 \leq i \leq m}$ trois familles de nombres réels, $\lambda \in \mathbb{R}$ et $p \in \mathbb{N}$.

- 1. Sans justification, les relations suivantes sont-elles vraies ou fausses en général?
 - **a.** $\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$. **b.** $\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n} a_k \times \sum_{k=1}^{n} b_k$.

- c. $\sum_{k=1}^{n} \lambda a_k = \lambda \sum_{k=1}^{n} a_k$. d. $\left(\sum_{k=1}^{n} a_k\right)^p = \sum_{k=1}^{n} a_k^p$.
- **2.** Reprendre la question **1.** en remplaçant tous les \sum par des \sum
- **3.** Transformer $\sum_{k=1}^{\infty} \ln a_k$, sous l'hypothèse que $a_k > 0$, pour tout $k \in [1, n]$.
- **4.** Est-il vrai que : $\prod_{i=1}^{m} \sum_{i=1}^{n} x_{i,j} = \sum_{i=1}^{n} \prod_{i=1}^{m} x_{i,j}$?

- **Exercice 14** •••• Calculer les sommes suivantes, où $n \in \mathbb{N}^*$.
- **1.** $\sum_{k=823}^{2000} 7$. **2.** $\sum_{k=1}^{n} k(k-1)$. **3.** $\sum_{k=1}^{n} (-1)^k$.

- **4.** $\sum_{k=0}^{n} 5^{2k}$. **5.** $\sum_{k=0}^{n} (2^k + k^2 + 2)$. **6.** $\sum_{k=0}^{n} \frac{3^k}{4^{k+1}}$.
- **Exercice 15** •••• Calculer, pour tous $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $\sum_{i=1}^{n} \exp(kx)$.
- **Exercice 16** •••• Pour tout $n \in \mathbb{N}$, on pose $u_n = (-2)^n$. Calculer les sommes suivantes.

- **1.** $\sum_{k=0}^{2n} u_k$. **2.** $\sum_{k=0}^{2n+1} u_k$. **3.** $\sum_{k=0}^{n} u_{2k}$. **4.** $\sum_{k=0}^{2n} (u_k + n)$.
- **5.** $\left(\sum_{k=0}^{2n} u_k\right) + n$. **6.** $\sum_{k=0}^{n} u_{k+n}$. **7.** $\sum_{k=0}^{n} u_{kn}$.
- **Exercice 17** •••• Montrer que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} (k+1)\sqrt{n-k} = \sum_{i=0}^{n-1} (n-i+1)\sqrt{i}.$$

- **Exercice 18 ••**○○ **D**émontrer les résultats suivants.
- **1.** Pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$.
- **2.** Pour tout $n \in \mathbb{N}^*$, $\sum_{k=0}^{n-1} (2k+1)^3 = 2n^4 n^2$.
- **3.** Pour tout $n \in \mathbb{N}$, $\sum_{k=1}^{n} kq^k = \frac{q}{(q-1)^2} (nq^{n+1} (n+1)q^n + 1)$.
- **Exercice 19** •••• Montrer par récurrence que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}.$$

— Exercice 20 ••∘∘ — ✓ Somme des cubes

Soit $(S_k)_{k\in\mathbb{N}^*}$ la suite définie par $S_k = \sum_{i=1}^k i$, pour tout $k \in \mathbb{N}^*$.

Dans cette exercice, on considère, pour $n \in \mathbb{N}^*$, n carrés emboîtés : le plus petit est de côté de longueur S_1 , le suivant de côté de longueur S_2 et le n^e de côté de longueur S_n . Pour $k \in [1, n]$, on note \mathscr{A}_k l'aire du carré de côté de longueur S_k .

- **1.** Pour $k \in [2, n]$, exprimer la différence $\mathcal{A}_k \mathcal{A}_{k-1}$ en fonction de S_k et S_{k-1} .
- **2.** En déduire une expression de $\mathscr{A}_k \mathscr{A}_{k-1}$ en fonction de k.
- **3.** Exprimer la somme $\sum_{k=2}^{n} k^3$ en fonction de certains \mathscr{A}_k .
- **4.** Conclure quant à la relation liant la somme des n premiers entires et la somme des n premiers cubes.
- **5.** Application : calculer les sommes $\sum_{1 \le i,j \le n} ij$ et $\sum_{1 \le i \le j \le n} ij$.

L'obtention de cette égalité via cette interprétation géométrique a été exposée par al-Karaji, mathématicien arabe du X^e siècle après J.-C., dans son traité Al-Fakhri fi'l-jabr wa'l-muqabala.

— Exercice 21 •○○○ — ♀ Sommes télescopiques

- 1. Démontrer rigoureusement le théorème 4 de simplification télescopique.
- **2.** Calculer, pour tout $n \in \mathbb{N}^*$, $\sum_{p=1}^n \ln\left(1 + \frac{1}{p}\right)$.
- **3.** Soit $n \in \mathbb{N}^*$.
 - **a.** Montrer que $\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}} = \frac{\sqrt{n}}{n} \frac{\sqrt{n+1}}{n+1}.$
 - **b.** En déduire une expression explicite de $\sum_{k=1}^{n} \frac{1}{(k+1)\sqrt{k} + k\sqrt{k+1}}$.
- **4.** Soit $n \in \mathbb{N}^*$.
 - **a.** Montrer qu'il existe deux réels a et b tels que $\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1}$.
 - **b.** En déduire une expression explicite de $\sum_{p=1}^{n} \frac{1}{1+2+\ldots+p}$.
- **5.** Déterminer, pour tout entier $n \ge 2$, une expression explicite de $\sum_{2 \le j \le n} \ln \left(1 \frac{1}{j^2}\right)$.

— Exercice 22 ••○○ **—** Démonstration alternative du théorème 47

- **1.** Pour tous $m, n \in \mathbb{N}$ avec $m \leq n$, simplifier de deux façons différentes la somme $\sum_{k=m}^{n} \left((k+1)^2 k^2 \right)$ et retrouver ainsi l'expression de $\sum_{k=m}^{n} k$ vue en cours.
- 2. Adapter la méthode précédente au calcul de $\sum_{k=0}^{n} k^2$, pour tout $n \in \mathbb{N}$.

— Exercice 23 •○○○ —

1. Trouver trois réels a, b et c tels que, pour tout entier $k \ge 2$, on ait :

$$\frac{k-5}{k(k^2-1)} = \frac{a}{k-1} + \frac{b}{k} + \frac{c}{k+1}.$$

- **2.** En déduire la valeur de $\sum_{k=2}^{n} \frac{k-5}{k(k^2-1)}$, pour tout entier $n \ge 2$.
- **Exercice 24** •••• Démontrer que, pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{\pm 1\}$,

$$\sum_{k=0}^{n} \frac{2^k}{x^{2^k} + 1} = \frac{1}{x - 1} - \frac{2^{n+1}}{x^{2^{n+1}} - 1}.$$

Exercice 25 •••• **Somme géométrique dérivée** Soit $n \in \mathbb{N}$.

- 1. Simplifier $\sum_{k=0}^{n} 2^{k}k$ en suivant pas à pas les indications suivantes :
 - compléter d'abord l'égalité : $\sum_{k=0}^{n} x^k = \dots;$
 - dériver des deux côtés;
 - évaluer en 2 et conclure.

Cette technique de calcul est cruciale. Il est recommandé de la retenir!

2. Retrouver le résultat précédent en calculant de deux façons différentes la somme

$$\sum_{0 \leqslant i < j \leqslant n} 2^j.$$

3. Adapter la technique de la question 1 au calcul de la somme $\sum_{k=0}^{n} k^2 3^k$.

1. Soit $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ deux suites numériques. Montrer que, pour tout $n\in\mathbb{N}$,

$$\sum_{k=0}^{n-1} (a_{k+1} - a_k) b_k = a_n b_n - a_0 b_0 - \sum_{k=0}^{n-1} a_{k+1} (b_{k+1} - b_k).$$

- **2.** Soit $z \in \mathbb{C}$ et $n \in \mathbb{N}$. Calculer $(z-1) \sum_{k=0}^{n} kz^{k}$, puis $\sum_{k=0}^{n} kz^{k}$.
- **Exercice 27** •••• Calculer, pour tout $n \in \mathbb{N}^*$, les sommes doubles suivantes.

- **5.** $\sum_{1 \le i, j \le n} \min(i, j)$. **6.** $\sum_{1 \le i \le j \le n} (i + j)$. **7.** $\sum_{1 \le i, j \le n} a^{i + j}$. **8.** $\sum_{1 \le i \le j \le n} a^{i + j}$.

- **—** Exercice 28 •••∘ **—** ♀ **☑** Sommation suivant les « diagonales » Soit $n \in \mathbb{N}$ et $(a_{i,j})_{0 \le i,j \le n}$ une famille de nombres complexes. Montrer que

$$\sum_{k=0}^{n} \left(\sum_{i+j=k} a_{i,j} \right) = \sum_{i=0}^{n} \left(\sum_{j=0}^{n-i} a_{i,j} \right) = \sum_{j=0}^{n} \left(\sum_{i=0}^{n-j} a_{i,j} \right).$$

Produits

- **Exercice 29** •••• Soit $n \in \mathbb{N}^*$. Écrire à l'aide de factorielles

- **1.** $\prod_{i=0}^{n} (i+2)$. **2.** $\prod_{i=1}^{n} (j-1)$. **3.** $\prod_{l=1}^{n} (n+k)$. **4.** $\prod_{l=1}^{n} l^{2} (l+1)^{3}$.
- **Exercice 30** •000 **M**ontrer SANS RÉCURRENCE que, pour tout $n \in \mathbb{N}^*$, $2^{n-1} \le n! \le n^{n-1}$
- **Exercice 31** •ooo **M**ontrer que, pour tout $n \in \mathbb{N}^*$, on a $(n+1)! \ge \sum_{i=1}^n k!$.

- **Exercice 32** •••• \bigcirc \bigcirc \bigcirc Comparer $2^{100!}$ et $2^{100!}$.
- **Exercice 33** •••• Montrer que, pour tous $n \in \mathbb{N}^*$ et $x_1, \ldots, x_n \in [0, 1]$, $\prod^{n} (1 - x_k) \geqslant 1 - \sum^{n} x_k.$
- **Exercice 34** •••• Simplifier les produits suivants, où $n \in \mathbb{N}^*$.

- **1.** $\prod_{k=0}^{n} 3$. **2.** $\prod_{k=1}^{n} (2k)$. **3.** $\prod_{k=0}^{n} (2k+1)$. **4.** $\prod_{k=0}^{n} q^k$. **5.** $\prod_{k=0}^{n} q^{2^k}$.

- 1. $\sum_{1 \le j \le k \le n} jk$. 2. $\sum_{1 \le i \le j \le n} \frac{i}{j}$. 3. $\sum_{1 \le i, j \le n} |i j|$. 4. $\sum_{1 \le i, j \le n} i2^j$. 6. $\prod_{k=1}^n (-5)^{k^2 k}$. 7. $\prod_{k=1}^n (4k^2 1)$. 8. $\prod_{i=1}^n n^n$. 9. $\prod_{k=1}^n \frac{2k + 5}{2k + 7}$.
- **Exercice 35** •••• Simplifier les produits suivants, où $n \in \mathbb{N}^*$.
- **1.** $\prod_{1 \le i, j \le n} x^{i+j}$, avec $x \in \mathbb{C}$. **2.** $\prod_{1 \le i, j \le n} i^j$. **3.** $\prod_{1 \le i, j \le n} ij$. **4.** $\prod_{p=0}^{n-1} \sum_{k=0}^p 2^{p!k}$.

- **Exercice 36** •ooo **Soit** $z \in \mathbb{C}$ et $n \in \mathbb{N}$. On pose $P = \prod_{k=0}^{n} (1 + z^{2^k})$.
- Calculer (1-z)P et en déduire une expression simple de P.
- Exercice 37 ••∘∘ Montrer par récurrence, puis sans récurrence, que, pour tout $n \in \mathbb{N}^*$,
- **1.** $\prod_{k=0}^{n} (2k+1) = \frac{(2n+1)!}{2^n n!}$ **2.** $\prod_{k=0}^{n-1} \frac{n!}{k!} = \prod_{k=0}^{n} k^k$.

— Exercice 38 •••∘ — 🗹

- **1.** Factoriser $k^3 1$ et $k^3 + 1$, pour tout $k \ge 2$.
- **2.** En déduire, pour tout $n \ge 2$, par télescopage, une simplification de $\prod_{k=0}^{\infty} \frac{k^3 1}{k^3 + 1}$.
- **3.** En déduire l'existence et la valeur de $\lim_{n\to+\infty} \prod_{k\to 2} \frac{k^3-1}{k^3+1}$.

Coefficients binomiaux

- **Exercice 39** 0000 🗹 Calculer les coefficients binomiaux suivants :
 - $\binom{4}{2}$, $\binom{9}{8}$, $\binom{8}{9}$, $\binom{7}{3}$, $\binom{125}{0}$, $\binom{45}{44}$ et $\binom{n}{3}$, pour $n \ge 3$.
- **Exercice 40** •••• Montrer que $\binom{2n}{n}$ est pair, pour tout $n \in \mathbb{N}^*$.
- Exercice 41 ••∘∘ —
- 1. Calculer les sommes suivantes, où n est un entier naturel.
 - **a.** $\sum_{k=0}^{n} \binom{n}{k}$. **b.** $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.
- **2.** Calculer, pour tout $n \in \mathbb{N}^*$, les sommes $\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2k}$ et $\sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \binom{n}{2k+1}$.
- **Exercice 42** •••• Simplifier, pour tout $n \in \mathbb{N}$, la somme $\sum_{k=0}^{n} \frac{(-1)^k}{k+1} \binom{n}{k}$.
- Exercice 43 ••○○ —
- **1.** Simplifier, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{n}{k} k$:
 - a. au moyen de la formule Comité-Président;
 - **b.** en dérivant de deux façons différentes $x \mapsto (x+1)^n$.
- **2.** Calculer, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{n}{k} 5^k k$.
- **3.** Via une des stratégies précédentes, simplifier, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \binom{n}{k} k^2$.

— Exercice 44 ••∘∘ **— ☑** Formule de Vandermonde

1. En procédant par récurrence sur n, montrer que

$$\forall n \in \mathbb{N}, \quad \forall (m, p) \in \mathbb{N}^2, \quad \sum_{k=0}^p \binom{m}{k} \binom{n}{p-k} = \binom{m+n}{p}.$$

- **2.** En utilisant l'égalité précédente, déterminer la valeur de $\sum_{k=0}^{p} k \binom{m}{k} \binom{n}{p-k}$.
- **3.** Calculer, pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} {n \choose k}^2$.

— Exercice 45 •••∘ **—** ♀ Formule d'inversion de Pascal

Soit $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ deux suites réelles telles que, pour tout $n\in\mathbb{N}, b_n=\sum_{k=0}^n\binom{n}{k}a_k$.

Montrer alors que, pour tout $n \in \mathbb{N}$, $a_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} b_k$.

Indications

Exercice 11. On pourra utiliser l'inégalité triangulaire (version généralisée)

$$||x| - |y|| \le |x \pm y| \le |x| + |y|.$$

- Exercice 17. Procéder à un changement d'indice.
- Exercice 21. 3.a. Utiliser la quantité conjuguée.
- Exercice 24. On pourra utiliser un télescopage.
- **Exercice** 28. Noter que i + j = k équivaut à j = k i. On pourra faire un dessin.
- Exercice 32. Commencer par majorer $2^{100}!$ par $2^{100 \times 2^{100}}$.
- Exercice 33. Procéder par récurrence sur n.
- Exercice 40. Utiliser la formule Comité-Président.
- **Exercice 45.** On pourra établir que $\binom{n}{k}\binom{k}{j} = \binom{n}{j}\binom{n-j}{k-j}$.

Éléments de réponses

- Exercice 1. 1. $2 \times 3^{n-1}$. 2. $2^2 \times 3^7$. 3. $\frac{1}{9 \times 2^n}$. 4. 13×2^n . 5. $6^n 1$. 6 $\frac{2^{n+2}}{3}$.
- Exercice 2. 1. 1. 2. 24. 3. 4. 4. $5\sqrt{3}$.
- **Exercice 3. 1.** $\max\{x,y\} + \min\{x,y\} = x + y$ et $\max\{x,y\} \min\{x,y\} = |x-y|$.
 - **2.** $\max\{x,y\} = \frac{x+y+|x-y|}{2}$ et $\min\{x,y\} = \frac{x+y-|x-y|}{2}$

Exercice 5. 1. Pour tout $x \in \mathbb{R}$, $x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$, ainsi le minimum de $x \longmapsto x^2 - x + 1$ sur $[1, +\infty[$ est atteint en 1, soit $1^2 - 1 + 1 = 1$. 2. Ainsi, pour tout $x \in [1, +\infty[$,

$$\frac{x + \sqrt{x}}{x^2 - x + 1} \leqslant \frac{2x}{\frac{3}{4}} = \frac{8}{3}x,$$

numérateur et dénominateur étant positifs. Finalement $\lambda = 8/3$ convient.

Exercice 6. L'ensemble des solutions est : **1.** {2}. **2.** $\{-3, -\sqrt{3}, 1, \sqrt{3}\}$. **3.** $\{-\frac{1}{2}, \frac{3}{4}\}$.

4.
$$\{-12, -4\}$$
. **5.** $\{-2, -1, \frac{3+\sqrt{17}}{2}\}$. **6.** $\{-2\}$. **7.** $\{\frac{3}{2}\}$. **8.** $\{1\}$. **9.** $\{1, 36\}$.

Exercice 7. L'ensemble des solutions est : $\left\{ \begin{array}{l} \varnothing & \text{si } a < 1 \\ \left\{ \frac{\left(a^2 - 1\right)^2}{4a^2} \right\} & \text{si } a \geqslant 1. \end{array} \right.$

Exercice 8. L'ensemble des solutions est : **1.** $[3-\sqrt{6},1] \cup [5,3+\sqrt{6}]$. **2.** $]-\infty$, 7[.

3.
$$\left[\frac{2}{5}, 8\right]$$
. **4.** $\left]-\infty, -3\right[\cup]-1, +\infty\right[$. **5.** $\left[-2, -1\right[\cup]1, 3\right]$. **6.** $\left]-\infty, 0\right[\cup\left[\frac{1}{7}, +\infty\right[$. **7.** $\left[-5, -1\right]$. **8.** $\left]-\infty, 7\right]\cup\left[14, +\infty\right[$. **9.** $\left]-\infty, -1\right]\cup\left[1, \frac{5}{4}\right[$.

7.
$$[-5, -1]$$
. **8.** $]-\infty, 7] \cup [14, +\infty[$. **9.** $]-\infty, -1] \cup [1, \frac{5}{4}[$.

Exercice 12. 2.a. $\sum_{k=0}^{n} 2^{k}$. 2.b. $\sum_{k=0}^{n} k^{2}$. 2.c. $\sum_{k=0}^{n} n^{k}$. 2.d. $\sum_{k=0}^{n} n^{n}$. 2.e. $\sum_{k=0}^{n} \frac{x^{k}}{k!}$.

2.f.
$$\sum_{k=0}^{26} (2k+1)$$
. **2.g.** $\sum_{k=4}^{81} 2k$. **2.h.** $\sum_{k=1}^{57} kx^{k-1} = \sum_{k=0}^{56} (k+1)x^k$.

2.i.
$$\sum_{k=1}^{33} (k+1)(k+2)x^k$$
. **2.j.** $\sum_{k=2}^{100} \frac{1}{k\sqrt{k-1} + (k-1)\sqrt{k}}$.

Exercice 13. 1.a. Vrai. 1.b. Faux. 1.c. Vrai. 1.d. Faux.

2.a. Faux. **2.b.** Vrai. **2.c.** Faux. **2.d.** Vrai. **3.**
$$\ln\left(\prod_{k=1}^n a_k\right)$$
. **4.** Faux.

Exercice 14. 1. $7 \times 1213 = 8491$. 2. $\frac{n(n+1)(n-1)}{2}$. 3. $\frac{(-1)^n - 1}{2}$.

4.
$$\frac{25^{n+1}-25}{24}$$
. **5.** $2^{n+1}+2n+1+\frac{n(n+1)(2n+1)}{6}$. **6.** $\frac{3}{4}\left(1-\left(\frac{3}{4}\right)^n\right)$.

Exercice 15. $\begin{cases} \frac{e^{(n+1)x} - 1}{e^x - 1} & \text{si } x \neq 0 \\ n + 1 & \text{si } x = 0. \end{cases}$

Exercice 16. 1. $\frac{1+2^{2n+1}}{3}$. 2. $\frac{1-4^{n+1}}{3}$. 3. $\frac{4^{n+1}-1}{3}$. 4. $\frac{1+2^{2n+1}}{3}+n(2n+1)$.

5.
$$\frac{1+2^{2n+1}}{3}+n$$
. **6.** $\frac{2^{2n+1}+(-2)^n}{3}$. **7.** $\left\{\begin{array}{cc} 1 & \text{si } n=0, \\ \frac{(2)^{n(n+1)}-1}{(-2)^n-1} & \text{sinon.} \end{array}\right.$

Exercice 20. 1. $S_k^2 - S_{k-1}^2$. 2. k^3 . 3. $\mathcal{A}_n - \mathcal{A}_1$. 5. $\left(\frac{n(n+1)}{2}\right)^2$ et $\frac{n(n+1)(n+2)(3n+1)}{2^d}$.

Exercice 21. 2.
$$\ln(n+1)$$
. 3.a. 3.b. $1-\frac{1}{\sqrt{n+1}}$

4.a.
$$a = 1$$
 et $b = -1$. **4.b.** $2 - \frac{2}{n+1}$. **5.** $\ln\left(\frac{n+1}{2n}\right)$.

Exercice 23. 1.
$$a = -2$$
, $b = 5$ et $c = -3$. 2. $\frac{2}{n} - \frac{3}{n+1} - \frac{1}{2} = -\frac{(n-1)(n+4)}{2n(n+1)}$.

Exercice 24. Puisque $x^{2^{k+1}} - 1 = (x^{2^k} - 1)(x^{2^k} + 1),$

$$\frac{2^k}{x^{2^k} - 1} - \frac{2^{k+1}}{x^{2^{k+1}} - 1} = \frac{2^k \left(x^{2^k} + 1\right) - 2^{k+1}}{\left(x^{2^k} - 1\right)\left(x^{2^k} + 1\right)} = \frac{2^k \left(x^{2^k} - 1\right)}{\left(x^{2^k} - 1\right)\left(x^{2^k} + 1\right)} = \frac{2^k}{x^{2^k} + 1}$$

Exercice 25. 1. $\sum_{x\neq 1}^{n} kx^{k-1} = \frac{nx^{n+1} - (n+1)x^n + 1}{(x-1)^2}$ et $\sum_{x\neq 1}^{n} k2^k = (n-1)2^{n+1} + 2$.

3.
$$\sum_{k=2}^{n} k(k-1)x^{k-2} = \sum_{x\neq 1} \frac{n(n-1)x^{n+1} - 2(n^2-1)x^n + n(n+1)x^{n-1} - 2}{(x-1)^3} \text{ et}$$

$$\sum_{k=0}^{n} k^2 3^k = \frac{(n^2 - n + 1)3^{n+1} - 3}{2}.$$

Exercice 26. 2. (z-1) $\sum_{i=1}^{n} kz^{i} = \frac{nz^{n+2} - (n+1)z^{n+1} + z}{z-1}$

Exercise 27. 1. $\frac{n(n+1)(n+2)(3n+1)}{24}$. 2. $\frac{n(n+3)}{4}$. 3. $\frac{n(n-1)(n+1)}{3}$.

4.
$$n(n+1)(2^n-1)$$
. **5.** $\frac{n(n+1)(2n+1)}{6}$. **6.** $\frac{n(n+1)^2}{2}$.

7.
$$\left\{ \begin{array}{ll} n^2 & \text{si } a = 1, \\ \left(\frac{a^{n+1} - a}{a - 1}\right)^2 & \text{sinon.} \end{array} \right. \left\{ \begin{array}{ll} \frac{n(n+1)}{2} & \text{si } a = 1, \\ \frac{2n + 1 - (-1)^n}{4} & \text{si } a = -1, \\ \frac{a^2(a^n - 1)(a^{n+1} - 1)}{(a+1)(a-1)^2} & \text{sinon.} \end{array} \right.$$

Exercice 28. Transformer $\sum_{i+j-k} a_{i,j}$ en $\sum_{i=0}^{\kappa} a_{i,k-i}$, puis permuter les deux sommes en i et k.

Exercice 29. **1.**
$$(n+2)!$$
. **2.** 0. **3.** $\frac{(2n)!}{n!}$. **4.** $n!^2(n+1)!^3$.

Exercice 32. $2^{100!} > 2^{100!}$

Exercice 34. 1.
$$3^{n+1}$$
. 2. $2^n n!$. 3. $\frac{(2n+1)!}{2^n n!}$. 4. $q^{\frac{n(n+1)}{2}}$. 5. $q^{2^{n+1}-1}$. 6. $(-5)^{\frac{n(n-1)(n+1)}{3}}$.

7.
$$(2n+1)\left(\frac{(2n)!}{2^n n!}\right)^2$$
. **8.** n^{n^2} . **9.** $\frac{7}{2n+7}$.

Exercice 35. 1. $x^{n^2(n+1)}$. 2. $(n!)^{\frac{n(n+1)}{2}}$. 3. $n!^{2n}$. 4. $2^{n!}-1$.

Exercice 36.
$$(1-z)P = 1 - z^{2^{n+1}}$$
. Exercice 38. 2. $\frac{2(n^2 + n + 1)}{3n(n+1)}$. 3. $\frac{2}{3}$.

Exercice 39. 6, 9, 0, 35, 1, 45, $\frac{n(n-1)(n-2)}{c}$.

Exercice 41. 1.a. 2^n . **1.b.** $\begin{cases} 0 & \text{si } n \ge 1 \\ 1 & \text{si } n = 0. \end{cases}$ **2.** 2^{n-1} pour les deux sommes.

Exercice 42. $\frac{1}{n+1}$. Exercice 43. 1. $n2^{n-1}$. 2. $5n6^{n-1}$. 3. $n(n+1)2^{n-2}$.

Exercice 44. 2. $m\binom{m+n-1}{n-1}$. 3. $\binom{2n}{n}$.