12 | Matrices et systèmes linéaires

Banque CCINP: Ø. Cahier de calcul : fiches 21 et 22.

Opérations matricielles

— Exercice 1 •○○○ —

1. Soit

$$A = \begin{pmatrix} 0 & 2 & -2 \\ 6 & -4 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 2 & -2 & -3 \end{pmatrix}, C = \begin{pmatrix} 8 & 2 \\ -3 & 2 \\ -5 & 5 \end{pmatrix}, D = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}, E = (x \ y \ z).$$

$$4. \begin{cases} x + y + 2z = 0 \\ 2x + 5y - 3z = 1 \\ 3x + 4y + 4z = 1 \\ x - 2y + 4z = 3 \end{cases}$$

Quels produits sont possibles? Les calculer!

2. Soit
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$. Calculer A^2 , B^2 , AB et BA .

Exercice 2 •••• Calculer
$$\begin{pmatrix} 1 & 2 & -1 & 3 \\ -2 & 0 & 5 & -4 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 3 & 1 \end{pmatrix} \begin{pmatrix} 7 & 1 & 0 & 0 \\ 0 & -6 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

$$1. \begin{cases} 2x - y + 2z - 2t = 3 \\ x - 3y - z + 6t = 4 \\ -3x + y - z + 2t = -4 \end{cases}$$

$$2. \begin{cases} 3x + 3y + 2z + 3t = 5 \\ 3x - 5z = 1 \\ 7x + 5y + 5t = 9 \end{cases}$$

Pour toute matrice $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{C})$, on appelle — Exercice 3 •○○○ conjuguée de A la matrice

$$\overline{A} = (\overline{a_{i,j}})_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}.$$

- **1.** Montrer que, pour tous $A, B \in \mathcal{M}_{n,p}(\mathbb{C}), \overline{A+B} = \overline{A} + \overline{B}$.
- **2.** Montrer que, pour tous $A \in \mathcal{M}_{n,p}(\mathbb{C})$ et $B \in \mathcal{M}_{p,q}(\mathbb{C})$, $\overline{AB} = \overline{A}\overline{B}$.
- **3.** Montrer que, pour tous $A \in GL_n(\mathbb{C})$, $\overline{A^{-1}} = (\overline{A})^{-1}$.

Systèmes linéaires

— Exercice 4 •○○○ — $(x,y) \in \mathbb{R}^2$ ou $(x,y,z) \in \mathbb{R}^3$.

Résoudre les systèmes linéaires suivants d'inconnues

1.
$$\begin{cases} 2x + y = 2 \\ 3x - 5y = 1 \end{cases}$$

2.
$$\begin{cases} 2x - y = -3 \\ -6x + 3y = 9 \end{cases}$$

3.
$$\begin{cases} x + y + z = 6 \\ x - 3y - 7z = 10 \\ x + 3y + 4z = 6 \end{cases}$$

4.
$$\begin{cases} x + y + 2z = 0 \\ 2x + 5y - 3z = 1 \\ 3x + 4y + 4z = 1 \\ x - 2y + 4z = 3 \end{cases}$$

5.
$$\begin{cases} 2x + y - z = 1 \\ x + 3y + 2z = 4 \\ x + 2y + z = 2 \end{cases}$$

6.
$$\begin{cases} 2x - y + 2z = 10 \\ x + 2y - 3z = -7 \\ 5x + 4y + z = 13 \end{cases}$$

7.
$$\begin{cases} 2x - y + 2z = 1 \\ -3x + 2y - z = 3 \\ -x + y + z = 4 \end{cases}$$

8.
$$\begin{cases} 2x + y - z = 1 \\ x - y + z = 2 \\ 4x + y + z = 3 \end{cases}$$

$$\mathbf{9.} \begin{cases} -2x + y - z = 1 \\ x + 2y + z = 4 \\ 3x + 26y + 7z = 48 \end{cases}$$

— Exercice 5 •○○○ — Résoudre les systèmes linéaires suivants d'inconnues $(x, y, z, t) \in \mathbb{R}^4$.

1.
$$\begin{cases} 2x - y + 2z - 2t = 3 \\ x - 3y - z + 6t = 4 \\ -3x + y - z + 2t = -4 \end{cases}$$

2.
$$\begin{cases} 3x + 3y + 2z + 3t = 5 \\ 3x - 5z = 5 \\ 7x + 5y + 5t = 5 \end{cases}$$

Exercice 6 •••• Pour quelles valeurs de $a, b, c \in \mathbb{R}$, le système linéaire

$$\begin{cases} x + y + 2z = a \\ x + z = b \\ 2x + y + 3z = c \end{cases}$$

d'inconnue $(x, y, z) \in \mathbb{R}^3$ est-il compatible?

Exercice 7 •○○○ —— Déterminer les coefficients de l'unique polynôme P de degré 2 pour lequel

$$P(1) = 2$$
, $P(2) = 1$ et $P(3) = 2$.

Exercice 8 • • • • Soit
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -1 & 2 \\ 1 & -3 & 0 \end{pmatrix}$$
.

Déterminer les coefficients réels a, b, c, d tels que $aA^3 + bA^2 + cA + dI_3 = 0$.

Exercice 9 •••• Résoudre les systèmes linéaires suivants d'inconnues $(x,y,z) \in \mathbb{R}^3$, en fonction du paramètre $m \in \mathbb{R}$.

1.
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$

1.
$$\begin{cases} mx + y + z = 1 \\ x + my + z = m \\ x + y + mz = m^2 \end{cases}$$
 2.
$$\begin{cases} x + y + z = -m(x+1) \\ 3x + 3y + z = my \\ 3x + 3y + z = -mz \end{cases}$$

Anneau des matrices carrées

Exercice 10 •000 — Montrer que, pour tous $A, B \in \mathcal{M}_n(\mathbb{K})$ et $p \in \mathbb{N}^*$,

$$A^{p} - B^{p} = \sum_{i=0}^{p-1} A^{i} (A - B) B^{p-i-1}.$$

Exercice 11 •••• Une matrice carrée est dite stochastique lorsque tous ses coefficients sont positifs ou nuls et lorsque la somme des coefficients de chaque ligne est égale à 1. Montrer que le produit de deux matrices stochastiques est encore une matrice stochastique.

Exercice 12 •••• Montrer qu'il n'existe pas de couple de matrices $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$ tel que $AB - BA = I_n$.

Exercice 13 •000 **Soit** $A, B \in \mathcal{M}_n(\mathbb{K})$ symétriques. Montrer que AB est symétrique si et seulement si AB = BA.

— Exercice 14 ••∘∘ —

- **1.** Exprimer, pour tous $A, B \in \mathcal{M}_n(\mathbb{R})$, $\operatorname{tr}(A^{\top}B)$ en fonction des coefficients de A et
- **2.** À quelle condition nécessaire et suffisante sur A a-t-on $\operatorname{tr}(A^{\top}A) = 0$?

Exercice 15 •••• Montrer que tout élément de $\mathscr{M}_n(\mathbb{K})$ s'écrit de façon unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique.

— Exercice 16 ••∘∘ — Un critère de nilpotence

Pour tout $p \in \mathbb{N}$, on note \mathcal{T}_p l'ensemble des matrices carrées $M \in \mathcal{M}_p(\mathbb{K})$ telles que

$$\forall i, j \in [1, n], \quad j < i + p \implies m_{ij} = 0.$$

- **1.** Quelle est concrètement la forme des matrices de \mathcal{I}_p , pour tout $p \in \mathbb{N}$?
- **2.** Montrer que, pour tous $p, q \in \mathbb{N}$, $A \in \mathcal{T}_p$ et $B \in \mathcal{T}_q$, on a $AB \in \mathcal{T}_{p+q}$.
- **3.** En déduire que toute matrice de \mathcal{I}_1 est nilpotente.

Exercice 17 •••• Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. Résoudre en fonction de A et Bl'équation matricielle $X + \operatorname{tr}(X)A = B$, d'inconnue $X \in \mathcal{M}_n(\mathbb{K})$.

Exercice 18 ●●○○ —— Déterminer les puissances des matrices suivantes.

a.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$$
. **b.** $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. **c.** $C = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$. **d.** $D = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$.

e.
$$E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. **f.** $F = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. **g.** $G = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

$$\mathbf{e.} \ E = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix} . \qquad \mathbf{f.} \ F = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} . \qquad \mathbf{g.} \ G = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} .$$

$$\mathbf{h.} \ H = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} . \qquad \mathbf{i.} \ I = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} . \qquad \mathbf{j.} \ J = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \ \text{avec} \ \theta \in \mathbb{R}.$$

$$\mathbf{k.} \ K = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}_{[n]} \quad \mathbf{l.} \ L = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}_{[n]}$$

Exercice 19 •••• Soit
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{pmatrix}$$
.

1. Montrer que, pour tout $n \in \mathbb{N}$, il existe $x_n \in \mathbb{R}$ tel que

$$M^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2x_{n} & 1 - 2x_{n} & 2x_{n} \\ x_{n} & -x_{n} & x_{n} + 1 \end{pmatrix}.$$

- **2.** Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est arithmético-géométrique.
- **3.** En déduire l'expression de M^n en fonction de n.

Exercice 20 •••• Calculer les puissances de la matrice $\begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix}$, $\begin{pmatrix} \mathbf{Exercice 20 \bullet 000} & \mathbf{Exercice 20 \bullet 000} \\ \mathbf{1. Soit } A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

Exercice 21 •••• Les matrices suivantes sont-elles inversibles? Le cas échéant, déterminer leur inverse.

1.
$$\begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$$
. **2.** $\begin{pmatrix} 2 & 5 \\ -6 & -15 \end{pmatrix}$. **3.** $\begin{pmatrix} 1 & 2 & -1 \\ 3 & 0 & -2 \\ -3 & 6 & 0 \end{pmatrix}$. **4.** $\begin{pmatrix} 4 & 2 & 3 \\ 1 & 2 & 9 \\ 5 & 2 & 1 \end{pmatrix}$.

$$\mathbf{8.} \begin{pmatrix} 0 & 1 & 0 & 4 \\ 4 & 2 & 1 & 3 \\ 13 & 2 & 1 & 9 \\ 7 & 2 & 1 & 5 \end{pmatrix}. \qquad \mathbf{9.} \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ 0 & 1 & 2 & \cdots & n-1 \\ 0 & 0 & 1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{[n]} \qquad \mathbf{10.} \begin{pmatrix} 1 & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & \ddots & 1 \\ & & & & 1 \end{pmatrix}_{[n]}$$

Exercice 22 •••• Pour quelles valeurs du réel a la matrice $A = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}$ est-elle inversible? Le cas échéant, déterminer l'inverse de A.

Exercice 23 •••• Soit $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 6 \\ 1 & -2 & 5 \end{pmatrix}$. Déterminer les réels λ tels que la matrice $A - \lambda I_3$ n'est pas inversible

Exercice 24 • $\circ \circ \circ$ Soit $A \in GL_p(\mathbb{K}), B \in GL_q(\mathbb{K})$ et $C \in \mathcal{M}_{p,q}(\mathbb{K})$.

Montrer que la matrice $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est inversible et calculer son inverse sous forme d'une matrice par blocs.

- **Exercice 25** •ooo **Soit** $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que A + B = AB.
- **1.** Montrer que $I_n A$ et $I_n B$ sont inversibles.
- **2.** Montrer que A et B commutent.

1. Soit
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
.

- **a.** Calculer A^2 .
- **b.** La matrice A est-elle inversible? Le cas échéant, expliciter son inverse.

2. Soit
$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -1 & 2 \\ -2 & -2 & 0 \end{pmatrix}$$
.

- **a.** Calculer A^3 .
- **b.** La matrice A est-elle inversible? Le cas échéant, expliciter son inverse.

3. Soit
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
.

- **a.** Calculer $A^3 + 3A^2 + 3A$.
- **b.** La matrice A est-elle inversible? Le cas échéant, expliciter son inverse.
- **c.** Résoudre l'équation $AX = \begin{pmatrix} -2 \\ -1 \\ 3 \end{pmatrix}$, où $X \in \mathcal{M}_{3,1}(\mathbb{R})$.
- **4.** On considère les matrices suivantes de $\mathcal{M}_n(\mathbb{R})$, où $n \geq 2$,

$$A = \begin{pmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{pmatrix} \quad \text{et} \quad J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

- **a.** Établir une relation entre A, J et I_n .
- **b.** Calculer J^2 .
- **c.** En déduire que A est inversible et l'expression de son inverse.

Exercice 27 •••• On pose
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$
.

- **1.** Résoudre, pour tout $\lambda \in \mathbb{R}$, le système linéaire $AX = \lambda X$, d'inconnue $X \in \mathcal{M}_{3,1}(\mathbb{R})$.
- **2.** En déduire trois matrices colonnes $X_i \in \mathcal{M}_{3,1}(\mathbb{R})$ non nulles et trois réels distincts λ_i , avec $i \in [1,3]$, tels que

$$\lambda_1 < \lambda_2 < \lambda_3$$
 et $\forall i \in [1, 3], AX_i = \lambda_i X_i$.

4

On note P la matrice de $\mathcal{M}_3(\mathbb{R})$ de colonnes X_1, X_2, X_3 .

- **3.** Montrer que P est inversible et calculer P^{-1} .
- **4.** Déterminer sans calcul une matrice diagonale $D \in \mathcal{M}_3(\mathbb{R})$ telle que AP = PD.
- **5.** En déduire, pour tout $k \in \mathbb{N}$, une expression de A^k en fonction de k, P et D, puis une expression explicite de A^k en fonction de k.

— Exercice 28 •• $\circ\circ$ — Une construction matricielle de $\mathbb C$

Au chapitre 6 nous avons admis l'existence d'un corps $\mathbb C$

- contenant \mathbb{R} et un élément i vérifiant $i^2 = -1$;
- dont tout élément s'écrit de façon unique sous la forme a + ib, avec $a, b \in \mathbb{R}$.

L'exercice qui suit propose la construction d'un sur-corps de \mathbb{R} que nous pourrons identifier à \mathbb{C} . Pour tout $(a,b) \in \mathbb{R}$, on pose

$$M(a,b) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

et on note $\mathcal{C} = \{M(a,b) \mid a,b \in \mathbb{R}\} = \mathbb{R}I_2 + \mathbb{R}J$, où J = M(0,1).

- **1.** Montrer que \mathcal{C} est un sous-anneau commutatif de $\mathcal{M}_2(\mathbb{R})$.
- **2.** Montrer que C est un corps.
- **3.** Montrer que l'application $x \mapsto xI_2$ est un morphisme injectif d'anneaux de \mathbb{R} dans $\mathscr{M}_2(\mathbb{R})$.
- 4. Conclure.
- **5.** Dans le cadre de cette identification de \mathcal{C} avec \mathbb{C} , à quelles opérations sur les matrices la conjugaison et le module correspondent-elles?

Exercice 29 •ooo **On note** A l'ensemble des matrices de la forme $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, a et b décrivant \mathbb{Z} .

- 1. Montrer que A est un anneau pour les lois d'addition et de multiplication matricielles.
- **2.** Déterminer U(A).

Exercice 30 •••• Soit $n \in \mathbb{Z}$. On note A l'ensemble des matrices de la forme $\begin{pmatrix} a & nb \\ b & a \end{pmatrix}$, a et b décrivant \mathbb{Q} .

- **1.** Montrer que A est un sous-anneau commutatif de $\mathcal{M}_2(\mathbb{R})$.
- 2. Montrer que A est un corps si et seulement si n n'est pas un carré parfait.

Exercice 31 •••• Pour tout $\theta \in \mathbb{R}$, on note $R(\theta)$ la matrice de $\mathscr{M}_2(\mathbb{R})$ suivante

$$R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

- **1.** Montrer que $\theta \longmapsto R(\theta)$ est un morphisme de groupes de \mathbb{R} dans $GL_2(\mathbb{R})$. Déterminer son noyau.
- **2.** En déduire le calcul des puissances de la matrice $R(\theta)$, pour tout $\theta \in \mathbb{R}$.

Exercice 32 •ooo **M** Montrer que $M \mapsto \det M$ est un morphisme surjectif de groupes de $(GL_2(\mathbb{K}), \times)$ dans (\mathbb{K}^*, \times) .

- **Exercice 33** •ooo **On note** G l'ensemble des matrices $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, où $n \mathbb{Z}$.
- **1.** Montrer que G est un sous-groupe de $GL_2(\mathbb{R})$.
- **2.** À quel groupe familier G est-il isomorphe?

Exercice 34 •••• Centre du groupe $GL_n(\mathbb{K})$ Déterminer le centre du groupe $GL_n(\mathbb{K})$, pour tout $n \in \mathbb{N}^*$.

Indications

Exercice 12. Penser à la trace.

Exercice 20. Écrire la matrice sous la forme $X^{\top}X$ avec $X \in \mathcal{M}_{1,3}(\mathbb{K})$.

Éléments de réponses

Exercice 1. 1. Les produits possibles sont :

$$AB = \begin{pmatrix} -4 & 6 & 6 \\ 12 & 2 & 0 \end{pmatrix}. \quad AC = \begin{pmatrix} 4 & -6 \\ 60 & 4 \end{pmatrix}. \quad CA = \begin{pmatrix} 12 & 8 & -16 \\ 12 & -14 & 6 \\ 30 & -30 & 10 \end{pmatrix}. \quad AD = \begin{pmatrix} 6 \\ 22 \end{pmatrix}.$$

$$B^{2} = \begin{pmatrix} 4 & 3 & 0 \\ 0 & 1 & 0 \\ -2 & 6 & 9 \end{pmatrix}. \quad BC = \begin{pmatrix} 13 & 6 \\ -3 & 2 \\ 37 & -15 \end{pmatrix}. \quad BD = \begin{pmatrix} 12 \\ 2 \\ 9 \end{pmatrix}.$$

$$EB = (2x + 2z \quad x + y - 2z \quad -3z). \quad EC = (8x - 3y - 5z \quad 2x + 2y + 5z).$$

$$DE = \begin{pmatrix} 5x & 5y & 5z \\ 2x & 2y & 2z \\ -x & -y & -z \end{pmatrix}. \quad ED = (5x + 2y - z).$$

$$2. \quad A^{2} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 3 & 5 \end{pmatrix}. \quad B^{2} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -2 & 0 \\ 1 & 0 & -2 \end{pmatrix}. \quad AB = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \\ 3 & -2 & 2 \end{pmatrix}. \quad BA = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 2 & 4 \\ 0 & -1 & 1 \end{pmatrix}.$$

Exercice 2. En procédant par blocs $\begin{pmatrix} 7 & -11 & 8 & -4 \\ -14 & -2 & -7 & 20 \\ 0 & 0 & -1 & 8 \\ 0 & 0 & 0 & 12 \end{pmatrix}$.

Exercice 14. 2. A = 0.

Exercice 4. 1.
$$\left(\frac{11}{13}, \frac{4}{13}\right)$$
. 2. $\{(x, 2x + 3) \mid x \in \mathbb{R}\}$. 3. $(5, 3, -2)$. 4. \varnothing . 5. \varnothing . 6. $(2, 0, 3)$. 7. $\{(-3z + 5, -4z + 9, z) \mid z \in \mathbb{R}\}$. 8. $(1, -1, 0)$. 9. $\left\{\left(-\frac{3}{5}z + \frac{2}{5}, -\frac{1}{5}z + \frac{9}{5}, z\right) \mid z \in \mathbb{R}\right\}$.

Exercice 5. 1.
$$\{(t+1, 2t-1, t, t) \mid t \in \mathbb{R}\}$$
. 2. $\{\left(\frac{5}{3}z + \frac{1}{3}, -\frac{7}{3}z - t + \frac{4}{3}, z, t\right) \mid (z, t) \in \mathbb{R}^2\}$

Exercice 6. Le système est compatible ssi c-a-b=0 et, le cas échéant, les solutions sont les triplets $(b - \lambda, a - b - \lambda, \lambda)$, avec $\lambda \in \mathbb{R}$.

Exercice 7. $P = X^2 - 4X + 5$.

Exercice 8.
$$A^2 = \begin{pmatrix} 4 & -9 & 3 \\ 2 & -5 & -2 \\ 1 & 3 & -3 \end{pmatrix}, A^3 = \begin{pmatrix} 7 & 0 & -6 \\ 0 & 11 & -4 \\ -2 & 6 & 9 \end{pmatrix} \text{ et } \left\{ \left(-\frac{1}{9}d, 0, -\frac{2}{9}d, d \right) \mid d \in \mathbb{R} \right\}.$$

Exercice 9. 1.
$$\left\{ \begin{array}{ll} \{(x,y,1-x-y) \mid x,y \in \mathbb{R}\} & \text{ si } m=1 \\ \varnothing & \text{ si } m=-2 \\ \left\{ \left(-\frac{m+1}{m+2},\frac{1}{m+2},\frac{(m+1)^2}{m+2}\right) \right\} & \text{ sinon.} \end{array} \right.$$

2.
$$\left\{ \begin{array}{ccc} \varnothing & \text{si } m \in \{2, -1\} \\ \{(-y, y, 0) \mid y \in \mathbb{R}\} & \text{si } m = 0 \\ \left\{\left(-\frac{m}{m+1}, -\frac{3m}{(m+1)(m-2)}, \frac{3m}{(m+1)(m-2)}\right)\right\} & \text{sinon.} \end{array} \right.$$

Exercice 15.
$$A = \frac{1}{2}(A^{\top} + A) + \frac{1}{2}(A^{\top} - A)$$
 avec $\frac{1}{2}(A^{\top} + A) \in \mathscr{S}_n(\mathbb{K})$ et $\frac{1}{2}(A^{\top} - A) \in \mathscr{A}_n(\mathbb{K})$.

Exercice 18. a.
$$A^n = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix}$$
. b. $B^n = 2^{n-1}B, \ n \ge 1$. c. $C^n = 2^{2n-1}B, \ n \ge 1$.

d.
$$D^{2n} = 2^n I_2$$
 et $D^{2n+1} = 2^n D$. **e.** $E^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & (-3)^n & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

$$\mathbf{f.}\ F^n = \frac{1}{2} \begin{pmatrix} 3^n + 1 & 3^n - 1 & 0 \\ 3^n - 1 & 3^n + 1 & 0 \\ 0 & 0 & 2^{n+1} \end{pmatrix}. \quad \mathbf{g.}\ G^n = 2^{n-1} \begin{pmatrix} 2 & n & 3n \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

$$\mathbf{h.}\ H^n = \begin{pmatrix} 1 & n & n^2 \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}. \quad \mathbf{i.}\ I^n = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 1 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}, \ n \geqslant 1.$$

h.
$$H^n = \begin{pmatrix} \hat{1} & n & n^2 \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$
. **i.** $I^n = \begin{pmatrix} 2^{n-1} & 0 & 2^{n-1} \\ 0 & 1 & 0 \\ 2^{n-1} & 0 & 2^{n-1} \end{pmatrix}, n \geqslant 1$

$$\mathbf{j.} \ J^{n} = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix}. \quad \mathbf{k.} \ K^{2p} = (n-1)^{p-1} \begin{pmatrix} n-1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 0 & 1 & \cdots & 1 \end{pmatrix}_{[n]}, \ p \geqslant 1, \ \text{et}$$

$$K^{2p+1} = (n-1)^p K$$
. I. $L^p = (-1)^p I_n + \frac{(n-1)^p - (-1)^p}{n} (L + I_n)$.

Exercice 19. 2. $x_{n+1} = 3 - 2x_n$.

Exercice 20.
$$M = \begin{pmatrix} a^2 & ab & ac \\ ab & b^2 & bc \\ ac & bc & c^2 \end{pmatrix} = X^{\top}X$$
, où $X = \begin{pmatrix} a & b & c \end{pmatrix}$.

Ainsi, pour tout $n \in \mathbb{N}^*$, $M^n = (XX^{\top})^{n-1}M = (a^2 + b^2 + c^2)^{n-1}M$.

Exercice 21. 1.
$$\frac{1}{5}\begin{pmatrix} 1 & -3 \\ 1 & 2 \end{pmatrix}$$
 2. Non inversible. 3. $\begin{pmatrix} 2 & -1 & -2/3 \\ 1 & -1/2 & -1/6 \\ 3 & -2 & -1 \end{pmatrix}$.

4. Non inversible. **5.**
$$\begin{pmatrix} -10/3 & 8/3 & -1/3 \\ 25/6 & -10/3 & 2/3 \\ -11/6 & 5/3 & -1/3 \end{pmatrix}$$
. **7.** $\frac{1}{4}A$. **8.** Non inversible.

6. Inversible ssi
$$z \notin \mathbb{U}$$
, d'inverse
$$\frac{1}{1-|z|^2} \begin{pmatrix} 1 & -\overline{z} & 0 \\ -z & 1+|z|^2 & -\overline{z} \\ 0 & -z & 1 \end{pmatrix}.$$

Exercice 22. A est inversible si et seulement si $a \notin \{1, -2\}$ et le cas échéant

$$A^{-1} = \frac{1}{(a+2)(a-1)} \begin{pmatrix} a+1 & -1 & -1 \\ -1 & a+1 & -1 \\ -1 & -1 & a+1 \end{pmatrix}.$$

Exercice 23. $\lambda \in \{4, 2, -3\}.$

Exercice 24. $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ 0 & B^{-1} \end{pmatrix}$.

Exercice 26. 1. $A^{-1} = A$. **2.** A est non inversible. **3.** $A^{-1} = -A^2 - 3A - 3I_3$.

4.a. $A = J - I_n$. **4.b.** $J^2 = nJ$.

4.c. $A^{-1} = \frac{1}{n-1}(A + (2-n)I_n)$, pour $n \ge 2$. Pour n = 1, A est non inversible.

Exercice 27. 1. L'ensemble des solutions est

$$\begin{cases} \ \{(x,-x,0) \mid x \in \mathbb{R}\} & \text{si } \lambda = 1 \\ \ \{(2z,z,z) \mid z \in \mathbb{R}\} & \text{si } \lambda = 2 \\ \ \{(2y,y,-3y) \mid y \in \mathbb{R}\} & \text{si } \lambda = -2 \\ \ \{(0,0,0)\} & \text{sinon.} \end{cases}$$

2. $(\lambda_1, \lambda_2, \lambda_3) = (-2, 1, 2).$

3. Pour
$$P = \begin{pmatrix} 2 & 1 & 2 \\ 1 & -1 & 1 \\ -3 & 0 & 1 \end{pmatrix}$$
, on a $P^{-1} = \frac{1}{12} \begin{pmatrix} 1 & 1 & -3 \\ 4 & -8 & 0 \\ 3 & 3 & 3 \end{pmatrix}$. **4.** $D = \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}$.

5.
$$A^k = PD^kP^{-1} = \frac{1}{12} \begin{pmatrix} 4 + 6\alpha + 2\beta & -8 + 6\alpha + 2\beta & 6\alpha - 6\beta \\ -4 + 3\alpha + \beta & 8 + 3\alpha + \beta & 3\alpha - 3\beta \\ 3\alpha - 3\beta & 3\alpha - 3\beta & 3\alpha + 9\beta \end{pmatrix}$$
 avec $\alpha = 2^k$ et $\beta = (-2)^k$.

Exercice 29. 2.
$$U(A) = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a = \pm 1 \text{ et } b \in \mathbb{Z} \right\}.$$

Exercice 34. $Z(GL_n(\mathbb{K})) = \mathbb{K}^*I_n$.