Structures algébriques usuelles

Cahier de calcul : \emptyset . Banque CCINP : \emptyset .

Lois de composition internes

Exercice 1 •••• On pose, pour tous $x, y \in [0, 1]$,

$$x \star y = x + y - xy.$$

- **1.** Montrer que $([0,1],\star)$ est un magma associatif et commutatif avec élément neutre.
- **2.** Quels sont les éléments inversibles de $([0,1],\star)$?
- **Exercice 2** •••• Soit (E, \leq) un ensemble totalement ordonné.
- 1. Montrer que $(x,y) \mapsto \max\{x,y\}$ définit une loi de composition interne sur E.
- 2. Montrer que le magma (E, max) est associatif et commutatif.
- 3. À quelle condition nécessaire et suffisante (E, \max) possède-t-il un élément neutre?
- **4.** Si (E, \max) possède un élément neutre, quels sont ses éléments inversibles?

Exercice 3 •••• Soit E un ensemble et \mathfrak{R} l'ensemble des relations binaires sur E. Pour tous $R, S \in \mathfrak{R}$, on définit la relation $R \star S$ sur E par

$$x(R \star S)y \iff \exists z \in E, xRz \text{ et } zSy.$$

Par ailleurs, on associe à toute fonction $f \in E^E$ la relation R_f définie sur E par

$$xR_fy \iff y = f(x).$$

- 1. Montrer que * est associative, mais non commutative en général.
- **2.** Simplifier $R_f \star R_g$, pour tous $f, g \in E^E$.
- 3. La loi ★ admet-elle un élément neutre?

Exercice 4 •••• **Oral X** Soit E un ensemble fini muni d'une loi de composition interne associative. Montrer qu'il existe $s \in E$ tel que $s^2 = s$.

Groupes

Exercice 5 •••• Pour tous $(x,y), (x',y') \in \mathbb{R}^* \times \mathbb{R}$, on pose

$$(x,y) \star (x',y') = (xx',xy'+y).$$

- **1.** Montrer que $(\mathbb{R}^* \times \mathbb{R}, \star)$ est un groupe. Est-il abélien?
- **2.** Simplifier $(x,y)^n$, pour tous $(x,y) \in \mathbb{R}^* \times \mathbb{R}$ et $n \in \mathbb{N}$.

— Exercice 6 ••○○ —

Déterminer l'ensemble des structures de groupe sur un ensemble de cardinal 3. (Indication : on pourra utiliser les résultats de l'exercice 22).

— Exercice 7 •••• On considère les fonctions de $\mathbb{R}\setminus\{0,1\}$ — $\mathbb{R}\setminus\{0,1\}$ définies par

$$a: x \longmapsto x, \qquad b: x \longmapsto 1-x, \qquad c: x \longmapsto \frac{1}{x},$$
 $d: x \longmapsto \frac{x}{x-1}, \qquad e: x \longmapsto \frac{x-1}{x} \qquad \text{et} \qquad f: x \longmapsto \frac{1}{1-x}.$

Montrer que $\{a, b, c, d, e, f\}$ est un sous-groupe de $(\mathfrak{S}(\mathbb{R}\setminus\{0,1\}), \circ)$, dont on déterminera la table.

— Exercice 8 ••∘∘ — Transport de structure

1. Soit G un groupe, E un ensemble et f une bijection de G sur E. On définit une loi interne \star sur E en posant, pour tous $x, y \in E$,

$$x \star y = f(f^{-1}(x)f^{-1}(y)).$$

Montrer que (E, \star) est un groupe.

2. a. Montrer que

$$\forall x, y \in \mathbb{R}, \quad \operatorname{th}(x+y) = \frac{\operatorname{th} x + \operatorname{th} y}{1 + \operatorname{th} x \operatorname{th} y}$$

b. Pour tous $x, y \in]-1, 1[$, on pose

$$x \oplus y = \frac{x+y}{1+xy}.$$

Montrer que l'on munit ainsi $(]-1,1[,\oplus)$ d'une structure de groupe abélien.

Exercice 9 •ooo — Soit $p \in \mathbb{N}^*$. Montrer que l'ensemble

$$\left\{ \exp\left(\frac{2ik\pi}{p^n}\right) \mid (k,n) \in \mathbb{Z} \times \mathbb{N} \right\}$$

est un sous-groupe de \mathbb{C}^* .

— Exercice 10 •○○○ —

Montrer que $\{z \in \mathbb{C} \mid \exists n \in \mathbb{N}^*, z^n = 1\}$ est un sous-groupe de \mathbb{C}^* .

Exercice 11 •••• Soit $a, b \in \mathbb{N}^*$.

À quelle condition nécessaire et suffisante \mathbb{U}_a est-il un sous-groupe de \mathbb{U}_b ?

— Exercice 12 •••∘ — Groupe des similitudes et groupes diédraux

On note S l'ensembles des fonctions $z \longmapsto az+b$ et $z \longmapsto a\overline{z}+b$ sur \mathbb{C} , où $(a,b) \in \mathbb{C}^* \times \mathbb{C}$.

- 1. Montrer que S est un groupe pour la composition.
- **2.** Soit $n \ge 2$. On note \mathcal{D}_n l'ensemble $\{f \in \mathcal{S} \mid f(\mathbb{U}_n) \subset \mathbb{U}_n\}$.
 - **a.** Pourquoi la fonction $f|_{\mathbb{U}_n}$ est-elle bijective de \mathbb{U}_n sur \mathbb{U}_n , pour tout $f \in \mathcal{D}_n$.
 - **b.** Montrer que \mathcal{D}_n est un sous-groupe de \mathcal{S} , appelé le groupe diédral de degré n.
 - **c.** Montrer que \mathcal{D}_n contient $\rho: z \longmapsto e^{2i\pi/n} z$ et $\sigma: z \longmapsto \overline{z}$.
 - **d.** Que vaut la somme des éléments de \mathbb{U}_n ? En déduire que tout élément de \mathcal{D}_n fixe 0.
 - **e.** Montrer que $\mathcal{D}_n = \{ \rho^k s^{\varepsilon} \mid k \in [0, n-1] \mid \text{et } \varepsilon \in \{0, 1\} \}.$

— Exercice 13 •••∘ —

Soit E un ensemble fini non vide muni d'une opération interne \star associative pour laquelle tout élément est régulier à droite et à gauche. Montrer que E est un groupe.

— Exercice 14 ••○○ **—**

Soit G un groupe. Montrer que G est abélien dans les deux situations suivantes :

- **1.** Pour tout $x \in G$, $x^2 = 1_G$.
- **2.** Tout élément de G peut être écrit comme un cube et, pour tous $x, y \in G$,

$$(xy)^3 = x^3y^3.$$

- **a.** Montrer que $x^3y^2 = y^2x^3$, pour tous $x, y \in G$.
- **b.** En déduire que, pour tout $x \in G$, x^2 commute à tout élément de G.
- c. Conclure.

— Exercice 15 ••○○ — Intersection et union de sous-groupes

Soit G un groupe.

- **1.** Soit $(H_i)_{i\in I}$ une famille de sous-groupes de G, indexée par un ensemble I. Montrer que $\bigcap_{i\in I} H_i$ est un sous-groupe de G.
- 2. a. Trouver deux sous-groupes de \mathbb{R}^* dont la réunion n'est pas un sous-groupe de \mathbb{R}^* .
 - **b.** Soit H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.
 - **c.** Soit $(H_n)_{n\in\mathbb{N}}$ une suite croissante de sous-groupes de G. Montrer que $\bigcup_{n\in\mathbb{N}} H_n$ est un sous-groupe de G.

Exercice 16 • $\circ \circ \circ$ **Centre d'un groupe** Soit G un groupe.

- **1.** Soit $x \in G$. On appelle centralisateur de x dans G, noté $C_G(x)$, l'ensemble des éléments de G qui commutent à x. Montrer que $C_G(x)$ est un sous-groupe de G.
- **2.** On appelle centre de G, noté Z(G), l'ensemble des éléments de G qui commutent à tout élément de G. Montrer que Z(G) est un sous-groupe de G.

— Exercice 17 ••∘∘ —

Un sous-groupe d'un groupe produit est-il toujours le produit de deux sous-groupes?

Exercice 18 •••• Sous-groupes additifs de \mathbb{R} (un grand classique!)

- **1.** Soit G un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.
 - **a.** Justifier l'existence de $a = \inf(G \cap \mathbb{R}_+^*)$.
 - **b.** Montrer que si a > 0, alors $a \in G$ puis $G = a\mathbb{Z}$.
 - **c.** Montrer que si a=0, alors G est dense dans \mathbb{R} .
- **2.** a. Soit $a, b \in \mathbb{R}^*$. Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est un sous-groupe dense de \mathbb{R} si et seulement si $\frac{a}{b}$ est irrationnel.
 - **b.** En déduire que $\{\cos(n) \mid n \in \mathbb{N}\}$ est dense dans [-1,1].

— Exercice 19 ••○○ — Théorème de Lagrange dans le cas abélien

- **1.** Soit G un groupe abélien fini et $g \in G$.
 - **a.** Montrer que l'application $x \mapsto gx$ est une bijection de G sur G.
 - **b.** Montrer, en calculant de deux façons le produit $\prod_{x \in C} (gx)$, que $g^{|G|} = 1_G$.
- **2.** Déterminer tous les sous-groupes finis de \mathbb{C}^* .

— Exercice 20 •••∘ —

Montrer que tout groupe fini de cardinal pair possède un élément $x \neq 1_G$ tel que $x^2 = 1_G$.

— Exercice 21 ••∘∘ — Sous-groupes des automorphismes intérieurs

Soit G un groupe. Pour tout $g \in G$, on note σ_g l'application $x \longmapsto gxg^{-1}$ de G dans G.

- **1.** Montrer que σ_g est un automorphisme de G, pour tout $g \in G$.
- **2.** Montrer que l'application $\sigma: g \longmapsto \sigma_g$ est un morphisme de groupes de G dans $\operatorname{Aut}(G)$.
- **3.** Montrer que Ker $\sigma = Z(G)$, où Z(G) est le centre de G (cf. exercice 16).

Exercice 22 •••• Théorème de Cayley Soit G un groupe.

Pour tout $g \in G$, on note μ_g l'application $x \longmapsto gx$ de G dans G.

- **1.** Montrer que, pour tous $g, g' \in G$, $\mu_{gg'} = \mu_g \circ \mu_{g'}$.
- **2.** En déduire que l'application $g \mapsto \mu_g$ est un morphisme de groupe injectif de G dans $\mathfrak{S}(G)$.

Exercice 23 •••• Soit G et G' deux groupes isomorphes. Montrer qu'il en va de même de Aut(G) et Aut(G').

— Exercice 24 ••○○ — Somme de caractères

Soit G un groupe fini et χ un morphisme de groupes de G dans \mathbb{C}^* . Calculer $\sum_{g \in G} \chi(g)$.

Exercice 25 •••• Soit G un groupe. Montrer que l'application $x \mapsto x^{-1}$ est un endomorphisme de G si et seulement si G est abélien.

— Exercice 26 •••∘ —

- **1.** Soit G un groupe et $x \in G$. On pose $\langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}.$
 - **a.** Montrer que $\langle x \rangle$ est un sous-groupe de G.
 - **b.** Montrer que les endomorphismes de $\langle x \rangle$ sont exactement les $g \longmapsto g^n$, avec $n \in \mathbb{Z}$.
- 2. En déduire
 - **a.** $\operatorname{Aut}(\mathbb{Z})$. **b.** $\operatorname{Aut}(\mathbb{Q})$. **c.** $\operatorname{Aut}(\mathbb{U}_n)$, pour tout $n \in \mathbb{N}^*$.

— Exercice 27 •••◦ **—**

- **1.** Montrer que les groupes \mathbb{R} et \mathbb{R}_+^* sont isomorphes.
- **2.** Montrer que les groupes \mathbb{Q} et \mathbb{Q}_+^* ne sont pas isomorphes.

Indication : considérer $\sqrt{2}$.

3. Déterminer l'ensemble des morphismes de groupes de \mathbb{Q} dans \mathbb{Q}_+^* .

— Exercice 28 ••∘∘ — Oral ENS

Trouver tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

Anneaux

— Exercice 29 •○○○ — Montrer qu'un élément non nul d'un anneau commutatif est régulier pour la multiplication si et seulement s'il n'est pas un diviseur de 0.

— Exercice 30 ••○○ **—** Démontrer que tout anneau intègre fini est un corps.

— Exercice 31 ••○○ — Différence symétrique de deux ensembles

Soit E un ensemble. Pour toutes parties A et B de E, on définit la différence symétrique de A et B, notée $A\Delta B$, par

$$A\Delta B = (A \cup B) \backslash (A \cap B).$$

- 1. Illustrer cette définition par un schéma.
- **2.** Que valent $A\Delta A$, $A\Delta \emptyset$ et $A\Delta \overline{A}$?
- **3.** Exprimer $\mathbb{1}_{A\Delta B}$ en fonction de $\mathbb{1}_A$ et $\mathbb{1}_B$.
- **4.** Montrer que $(\mathscr{P}(E), \Delta, \cup)$ est un anneau commutatif.
- **5.** Déterminer $U(\mathcal{P}(E))$. L'anneau $\mathcal{P}(E)$ est-il intègre?
- **6.** Soit F une partie de E. Montrer que $\mathscr{P}(F)$ est quasiment un sous-anneau de $\mathscr{P}(E)$. Quelle propriété fait défaut?

— Exercice 32 ••∘∘ — Anneau des entiers de Gauss

- **1.** Soit $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}.$
 - **a.** Montrer que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} .
 - **b.** Montrer que, pour tout $z \in \mathbb{Z}[i], |z|^2 \in \mathbb{N}$.
 - **c.** En déduire $\mathcal{U}(\mathbb{Z}[i])$.
- **2.** Même question avec $\mathbb{Z}[i\sqrt{2}] = \{a + ib\sqrt{2} \mid a, b \in \mathbb{Z}\}.$

— Exercice 33 •○○○ —

Déterminer l'unique structure de corps sur un ensemble à deux éléments.

4

Exercice 34 •••• Soit A un sous-anneau de \mathbb{R} .

Montrer que A est dense dans \mathbb{R} si et seulement si $A \cap]0,1[=\emptyset.$

— Exercice 35 ••∘∘ — Éléments nilpotents d'un anneau

Soit A un anneau. Un élément $x \in A$ est dit nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0_A$.

- 1. Si A est intègre, montrer que 0_A est le seul élément nilpotent de A.
- **2.** Montrer que la somme et le produit de deux éléments nilpotents de A qui COMMUTENT sont encore nilpotents.
- **3.** Pour tout $x \in A$ nilpotent, montrer que $1_A x$ est inversible et déterminer son inverse.
- **4.** Plus généralement, que dire de la somme d'un élément nilpotent et d'un élément inversible qui commutent?

— Exercice 36 •••∘ — Un cas particulier du théorème de Jacobson[†]

Soit A un anneau. On appelle centre de A, noté Z(A), l'ensemble des éléments de A qui commutent à tout élément de A (pour la multiplication bien sûr).

- 1. Montrer que Z(A) est un sous-anneau de A.
- **2.** On suppose que $x^3 = x$, pour tout $x \in A$.
 - **a.** Montrer que

$$\forall (x,y) \in A^2, \quad xy = 0 \implies yx = 0.$$

- **b.** Soit $x \in A$. On suppose que $x^2 = x$. Montrer que $x \in Z(a)$. Indication: on pourra étudier x(y xy), pour tout $y \in A$
- **c.** Montrer que, pour tout $x \in A$, $x^2 \in Z(A)$.
- **d.** En déduire que A est un anneau commutatif.

— Exercice 37 ••○○ — Anneau de Boole

Soit A un anneau de Boole, i.e. un anneau non nul pour lequel $x^2 = x$, pour tout $x \in A$.

- **1.** Montrer que A est commutatif.
- **2.** Déterminer A dans le cas où A est intègre.
- **3.** On définit une relation binaire \leq sur A en posant, pour tous $x, y \in A$,

$$x \leqslant y \iff yx = x.$$

Montrer que \leq est une relation d'ordre.

†. Le théorème de Jacobson énonce plus généralement qu'un anneau A est commutatif dès lors que

$$\forall x \in A, \quad \exists n \geqslant 2, \quad x^n = x.$$

— Exercice 38 ••○○ —

- **1.** Les anneaux \mathbb{R} et \mathbb{C} sont-ils isomorphes?
- 2. Déterminer tous les endomorphismes d'anneau de $\mathbb C$ dont la restriction à $\mathbb R$ est la fonction identité.

Exercice 39 •••• Déterminer les endomorphismes de l'anneau \mathbb{Z} .

Exercice 40 •••• **Oral X** Soit $E = \{a + b\sqrt{2} \mid (a,b) \in \mathbb{Q}^2\}$. Montrer que E est un sous-corps de \mathbb{C} et en déterminer tous les automorphismes.

Indications

Exercice 13. On pourra utiliser la propriété suivante : si E est un ensemble fini et si $f \in E^E$, alors f est bijective si et seulement si elle est injective.

Exercice 17. Non. Il suffit donc d'exhiber un contre-exemple.

Exercice 18. Pour la question **1**, penser à la division euclidienne dans \mathbb{R} (exemple 41 du chapitre 9) et s'inspirer de l'exemple 41 du cours. En **1.b**, on pourra notamment raisonner par l'absurde et examiner ce qu'il se passe dans $G \cap]a, 2a[$.

Exercice 20. On pourra considérer la relation binaire \sim sur G définie par

$$x \sim y \iff x = y \text{ ou } x = y^{-1}$$

et commencer par vérifier qu'il s'agit d'une relation d'équivalence, puis s'intéresser aux classes d'équivalence.

Exercice 24. Les applications de l'exercice 22 suggèrent des changements d'indice dans la somme.

Exercice 28. 3. Un tel morphisme est de la forme $r \mapsto a^r$, avec $a \in \mathbb{Q}_+^*$.

Exercice 30. Considérer l'application $x \mapsto ax$ pour un élément a non nul.

Exercice 37. 1. Que dire de $(1+x)^2$ et $(x+y)^2$ pour $x,y \in A$.

Éléments de réponses

Exercice 1. 1. Le neutre est 0. 2. 0 est le seul élément inversible.

Exercice 2. 3. E possède un minimum. 4. Le neutre est le seul élément inversible.

Exercice 3. 2. $R_f \star R_g = R_{g \circ f}$. 3. =.

Exercice 5. 2. $(x^n, \frac{x^n-1}{x-1}y)$.

Exercice 11. a divise b.

Exercice 19. 2. Les \mathbb{U}_n avec $n \in \mathbb{N}^*$.

Exercice 24.
$$\sum_{g \in G} \chi(g) = \left\{ \begin{array}{cc} \operatorname{Card}(G) & \text{ si } \chi = \widetilde{1} \\ 0 & \text{ sinon.} \end{array} \right.$$

Exercice 26. 2.a $\operatorname{Aut}((\mathbb{Z},+)) = \{\operatorname{Id}_{\mathbb{Z}}, -\operatorname{Id}_{\mathbb{Z}}\}\ \operatorname{et}\ (\operatorname{Aut}((\mathbb{Z},+)), \circ) \simeq (U(\mathbb{Z}), \times).$

2.b Aut((
$$\mathbb{Q}$$
, +)) = { $x \longmapsto ax \mid a \in \mathbb{Q}^*$ } et (Aut((\mathbb{Q} , +)), \circ) \simeq (\mathbb{Q}^* , \times).

2.c Aut((
$$\mathbb{U}_n, \times$$
)) = { $\omega \longmapsto \omega^a \mid a \in [0, n-1]$ et $a \land n = 1$ }.

Exercice 27. 1. Considérer exp ou ln. 3. Le seul morphisme est le morphisme trivial.

Exercice 28. Il y a seulement la fonction nulle.

Exercice 32. 1.c $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$. 2.c $U(\mathbb{Z}[i\sqrt{2}]) = \{\pm 1\}$.

Exercice 38. 1. Non. 2. $\mathrm{Id}_{\mathbb{C}}$ et $z \longmapsto \overline{z}$.

Exercice 39. $Id_{\mathbb{Z}}$.

Exercice 40. $\operatorname{Id}_E \operatorname{et} a + b\sqrt{2} \longmapsto a - b\sqrt{2}$.