Programme de colles

semaine 5 du 3 au 7 novembre

Tous les énoncés du cours (définitions et théorèmes) sont exigibles. En revanche, les seules démonstrations exigibles sont celles des résultats mentionnés au paragraphe « Questions de cours ».

Chapitre 6 - Nombres complexes

- Forme algébrique, parties réelle et imaginaire.
- Module (inégalité triangulaire avec cas d'égalité) et conjugué.
- Équation du second degré :
 - × Racines carrées d'un nombre complexe;
 - \times Résolution de l'équation du second degré à coefficients complexes;
 - × Factorisation du trinôme du seconde degré, relation coefficients/racines.
- Exponentielle complexe.
 - × Exponentielle imaginaire, propriétés (formules d'Euler et de Moivre, transformation somme/produit).
 - × Applications à la trigonométrie :
 - (dé)linéarisation des expressions trigonométriques;
 - factorisation de sommes $(a\cos t + b\sin t, \cos x \pm \cos y, \sin x \pm \sin y)$.
 - × Forme trigonométrique, arguments, liens avec la forme algébrique.
 - \times Exponentielle complexe (périodicité, transformation somme/produit), dérivation de e^{φ} avec $\varphi \in \mathcal{D}(I,\mathbb{C})$.
- Racines n^{es} (de l'unité).
- Interprétation géométrique des nombres complexes : caractérisation de l'alignement de points, du parallélisme et de l'orthogonalité.
- Étude des similitudes directes du plan.

Questions de cours

- Exposer les énoncés relatifs à n'importe quelle notion du programme de colle.
- Les preuves des énoncés suivants sont exigibles.
- Inégalité triangulaire AVEC cas d'égalité dans C.
- Existence et calcul (sous forme algébrique) des racines carrées dans \mathbb{C} .
- Factorisation de la somme $\sum_{k=0}^{n} \cos(2kx)$, où $n \in \mathbb{N}$ et $x \in \mathbb{R}$.
- Liens entre la forme algébrique et la forme trigonométrique d'un nombre complexe non nul.
- Racines n^{es} d'un nombre complexe.
- Calcul de la somme $\sum_{\omega \in \mathbb{U}_n} |\omega 1|$ (CCINP 89).
- Résolution dans \mathbb{C} de l'équation $(z+i)^n=(z-i)^n$, en montrant que les solutions sont réelles (CCINP 84).