
21 Espaces vectoriels

Dans l’ensemble de ce chapitre, K désigne l’un des corps R ou C et I est un ensemble non vide quelconque. †

Nous complétons notre étude des structures algébriques débutée au chapitre 11 avec la présentation de la structure
fondamentale d’espace vectoriel, sur laquelle est basée l’algèbre linéaire (étude des applications linéaires).

1 Espaces vectoriels et combinaisons linéaires

1.1 Structure d’espace vectoriel

Soit K un corps et E un ensemble muni d’une loi de composition interne, notée ` et appelée loi d’addition, et
d’une loi externe, notée ¨ et appelée loi de multiplication externe par un scalaire, i.e. une application

K ˆ E ÝÑ E
pλ, xq ÞÝÑ λ ¨ x.

On dit que le triplet pE,`, ¨q est un K-espace vectoriel, ou un espace vectoriel sur K, lorsque
• pE,`q est un groupe abélien ;
• pour tous x, y P E et λ, µ P K,

(i) (associativité mixte) λ ¨ pµ ¨ xq “ pλµq ¨ x ; (ii) (distributivité mixte 1 ) λ ¨ px ` yq “ λ ¨ x ` λ ¨ y ;
(iii) (neutralité mixte) 1 ¨ x “ x ; (iv) (distributivité mixte 2 ) pλ ` µq ¨ x “ λ ¨ x ` µ ¨ x.

Les éléments de E sont appelés des vecteurs et ceux de K des scalaires, ces derniers agissant sur les vecteurs par
l’intermédiaire de la loi externe.

Définition 1 – Espace vectoriel

La structure d’espace vectoriel, qui peut sembler hermétique au premier abord, est omniprésente en mathématiques.
En mener l’étude systématique s’impose donc.

On peut évidemment s’interroger sur l’origine de la terminologie d’« espace vectoriel » et de « vecteurs » dans un
cadre aussi abstrait. La réponse étant que les règles de la définition précédentes sont exactement celles classiquement
vérifiées par les vecteurs usuels du plan et de l’espace. Dorénavant, les vecteurs pourront désigner des objets aussi
divers que des matrices, des polynômes, des fonctions ou des suites, que l’on pourra ainsi s’efforcer de visualiser
géométriquement.

Remarque 2
• Un espace vectoriel E est nécessairement non vide, puisqu’il contient toujours le vecteur nul 0E (élément neutre

de la loi additive du groupe abélien pE,`q).
• On écrit la plupart du temps « λx » en lieu et place de « λ ¨ x », pour λ P K et x P E. Conventionnellement, on

écrit le scalaire à gauche et le vecteur à droite.
• En géométrie, il est d’usage de noter les vecteurs x⃗ avec une flèche. En revanche, on utilise usuellement la notation

plus légère sans flèche pour les vecteurs d’un espace vectoriel quelconque. Il faudra donc être vigilant et veiller à
ne pas confondre vecteurs et scalaires au sein d’une même expression.

Soit E un K-espace vectoriel.
(i) Pour tous x P E et λ P K, λ ¨ x “ 0E ðñ λ “ 0 ou x “ 0E .
(ii) Pour tout x P E, p´1q ¨ x “ ´x, où ´x est l’opposé de x dans E et ´1 l’opposé de 1 dans K.

Théorème 3 – Règles de calcul dans un espace vectoriel

Démonstration. ... ■

Attention ! On veillera à ne pas confondre 0E l’élément nul de l’espace vectoriel E avec 0 l’élément nul
de l’ensemble des scalaires K. L’élément 0E est un vecteur tandis que 0 est un scalaire !

†. Tous les résultats énoncés dans ce chapitre demeurent vrais sur un corps K quelconque.
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2 Espaces vectoriels

Exemple 4 – K-espace vectoriel K La structure de corps de K confère au triplet pK,`,ˆq une structure d’espace
vectoriel sur lui-même, la multiplication classique ˆ dans K étant assimilée à la loi de multiplication externe par un
scalaire « ¨ ».

Les deux théorèmes suivants sont analogues à ceux énoncés au chapitre 11 pour les structures de groupe et d’anneau.

Soit E1, . . . , En des K-espaces vectoriels. On munit E1 ˆ . . . ˆ En de deux lois ` et ¨ en posant, pour tous λ P K
et px1, . . . , xnq, py1, . . . , ynq P E1 ˆ . . . ˆ En :

px1, . . . , xnq ` py1, . . . , ynq “ px1 ` y1, . . . , xn ` ynq et λ ¨ px1, . . . , xnq “ pλ ¨ x1, . . . , λ ¨ xnq.

Alors pE1 ˆ . . . ˆ En,`, ¨q est un K-espace vectoriel. Notons que 0E1ˆ...ˆEn “ p0E1 , . . . , 0Enq.

Théorème 5 – Espace vectoriel produit

Démonstration. Simple vérification des axiomes de la définition. ■

Exemple 6 – Familles de scalaires En particulier, Kn “

n fois
hkkkkkkikkkkkkj

K ˆ . . . ˆ K est un K-espace vectoriel, pour tout n P N˚,
en vertu de l’exemple 4 et du théorème précédent.
On retrouve ici le cadre des vecteurs du plan avec R2 et celui des vecteurs de l’espace avec R3.
Par exemple, p1, 4,´3q ` 2 ¨ p0, 2, 5q “ p1, 8, 7q – les opérations se faisant coordonnées par coordonnées.

Exemple 7 – Matrices Pour tous n, p P N˚, pMn,ppKq,`, ¨q est un K-espace vectoriel pour ses lois usuelles d’addition
et de multiplication par un scalaire.
En effet, il s’agit d’une reformulation du théorème 7 du chapitre 12.

Exemple 8 – Polynômes et fractions rationnelles KrXs et KpXq sont des K-espace vectoriel pour leurs lois usuelles
d’addition et de multiplication par un scalaire.
En effet, il s’agit d’une simple vérification des axiomes de la définition.

Soit X un ensemble non vide et E un K-espace vectoriel. On munit l’ensemble EX des fonctions de X dans E
de deux lois ` et ¨ en définissant, pour tous f, g P EX et λ P K, les fonctions f ` g et λ ¨ f par :

@x P X, pf ` gqpxq “ fpxq ` gpxq et pλ ¨ fqpxq “ λ ¨ pfpxqq.

Alors
`

EX ,`, ¨
˘

est un K-espace vectoriel. Notons que 0EX est la fonction nulle x ÞÝÑ 0E de X dans E.

Théorème 9 – Espace vectoriel de fonctions

Démonstration. Simple vérification des axiomes de la définition. ■

Exemple 10 – Fonctions et suites à valeurs dans K
• Pour tout intervalle I non vide, l’ensemble KI des fonctions de I dans K est un K-espace vectoriel pour l’addition

des fonctions et leur multiplication par un scalaire (il s’agit du théorème précédent avec X “ I et E “ K).
• L’ensemble KN des suites à valeurs dans K est un K-espace vectoriel pour l’addition des suites et leur multiplication

par un scalaire (il s’agit du théorème précédent avec X “ N et E “ K).

Exemple 11 L’exemple 7 est un aussi un cas particulier du théorème précédent avec X “ J1 , nK ˆ J1 , pK et E “ K.

Exemple 12 Tout C-espace vectoriel est aussi un R-espace vectoriel. En particulier, C est muni d’une structure de
R-espace vectoriel.
En effet, si E est un C-espace vectoriel, λ ¨ x est défini pour tous λ P C et x P E, donc en particulier pour tout λ P R, ce qui
justifie que l’on puisse considérer E comme un R-espace vectoriel, par restriction de l’ensemble des scalaires.
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Espaces vectoriels 3

1.2 Combinaisons linéaires

Soit E un K-espace vectoriel, A une partie de E et x1, . . . , xn des vecteurs de E, avec n P N˚.

• On appelle combinaison linéaire des vecteurs x1, . . . , xn tout vecteur de E de la forme
n
ÿ

k“1

λkxk, où λ1, . . . , λn P K

sont des scalaires, appelés les coefficients de la combinaison linéaire.
• On appelle combinaison linéaire d’éléments de A toute combinaison linéaire d’un nombre fini d’éléments de A.

Définition 13 – Combinaisons linéaires d’un nombre fini de vecteurs

Les espaces vectoriels sont conçus pour pouvoir réaliser des combinaisons linéaires (mélanges
d’additions et de multiplications par des scalaires).

Cette notion se conçoit géométriquement très simplement dans le plan ou l’espace. Sur la figure
ci-contre, u⃗ est combinaison linéaire de i⃗ et j⃗, mais ce n’est pas le cas de v⃗. Par contre, dans l’espace,
tout vecteur est combinaison linéaire de i⃗, j⃗ et k⃗.

Attention ! Péché d’identification.

En général :
n
ÿ

k“1

λkxk “

n
ÿ

k“1

µkxk ùñ λk “ µk, pour tout k P J1 , nK.

Par exemple : p1, 1q ` 2p0, 1q ` 2p1, 0q “ p3, 3q “ 2p1, 1q ` p0, 1q ` p1, 0q.
Nous reviendrons sur cette question au paragraphe 3.2.

i⃗
j⃗

k⃗

u⃗

v⃗

Exemple 14 Dans R2, p2, 7q est combinaison linéaire des vecteurs p5,´2q et p1,´3q : p2, 7q “ p5,´2q ´ 3p1,´3q.

Exemple 15 Dans M2pRq,

˜

´1 2

2 0

¸

n’est pas combinaison linéaire des vecteurs
ˆ

1 1
0 0

˙

,
ˆ

´2 1
3 2

˙

et
ˆ

1 0
´1 1

˙

.

Exemple 16 Dans le R-espace vectoriel C, tout nombre complexe z est combinaison linéaire à coefficients réels des
complexes 1 et i, puisque z “ Repzq ¨ 1 ` Impzq ¨ i.

Exemple 17 Soit n P N. Tout polynôme de KnrXs est combinaison linéaire des polynômes 1, X,X2, . . . , Xn puisque

l’on peut l’écrire
n
ÿ

k“0

akX
k pour certains a0, . . . , an P K.

La notion suivante va nous permettre d’étendre la notion de combinaison linéaire à un nombre quelconque de
vecteurs.

Soit I un ensemble. Une famille pλiqiP I d’éléments de K indexée par I est dite presque nulle lorsque tous ses
éléments sont nuls sauf éventuellement un nombre fini d’entre eux, i.e. lorsque l’ensemble ti P I | λi ‰ 0u est fini.
On note KpIq l’ensemble des familles presque nulles d’éléments de K indexées par I.

Définition 18 – Famille presque nulle de scalaires

Dans le cas où l’ensemble d’indices I est fini, la précision « presque nulle » devient sans intérêt et on a KI “ KpIq.

Soit E un K-espace vectoriel, I un ensemble quelconque et pxiqiPI une famille de vecteurs de E.
On appelle combinaison linéaire de la famille pxiqiPI tout vecteur de E de la forme

ÿ

iPI

λixi où pλiqiPI est une

famille presque nulle d’éléments de K.

Définition 19 – Combinaison linéaire d’un nombre quelconque de vecteurs

Cette définition nous autorise donc à manipuler des combinaisons linéaires d’un nombre infini de vecteurs, en se
limitant toutefois à des sommes ne comportant qu’un nombre fini de termes non nuls. La notion de sommes infinies
n’a en effet aucun sens en l’absence d’une notion de limite adéquate à laquelle l’adosser.
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4 Espaces vectoriels

Exemple 20 KrXs est l’ensemble des combinaisons linéaires de la famille
`

Xk
˘

kPN et la convention d’écriture des

polynômes sous la forme
`8
ÿ

k“0

akX
k désigne bien une somme ne comportant qu’un nombre fini de termes non nuls.

1.3 Sous-espaces vectoriels

Soit E un K-espace vectoriel et F une partie de E stable par addition et par multiplication par un
scalaire. On dit que F est un sous-espace vectoriel de E lorsque F est un K-espace vectoriel pour les lois
induites par celles de E.

Définition 21 – Sous-espace vectoriel

Si F est sous-espace vectoriel de E, en particulier F est un sous-groupe additif de E et on a donc 0F “ 0E (théorème
35 du chapitre 11).

Exemple 22 – Sous-espaces vectoriels triviaux Si E est un K-espace vectoriel, t0Eu et E sont deux sous-espaces
vectoriels de E – parfois dits triviaux. Notamment t0Eu est un K-espace vectoriel – parfois dit trivial.

Exemple 23 La partie F “
␣

px, yq P R2
ˇ

ˇ x2 ` x ` y2 “ 0
(

n’est pas un sous-espace vectoriel de R2.
En effet, F n’est pas stable par multiplication par un scalaire, puisque p´1, 0q P F tandis que p´2, 0q “ 2p´1, 0q R F . Ni par
addition d’ailleurs, puisque p´2, 0q “ p´1, 0q ` p´1, 0q.

Soit E un K-espace vectoriel et F une partie de E. Les assertions suivantes sont équivalentes
(i) F est un sous-espace vectoriel de E ;

(ii)
"

‚ 0E P F ;
‚ F est stable par combinaison linéaire : @λ, µ P K, @x, y P F, λx ` µy P F.

Théorème 24 – Caractérisation des sous-espaces vectoriels

Démonstration.
• (i) ùñ (ii). Si F est un sous-espace vectoriel de E, on a rappelé que 0E “ 0F P F . De plus, pour tous x, y P F et λ, µ P K,

λx et µy sont des éléments de F , partie stable de E par multiplication par un scalaire, et enfin λx ` µy P F , car F est
stable par addition.

• (ii) ùñ (i). Si l’assertion (ii) est vraie, F est en particulier stable par addition (pour λ “ µ “ 1) et multiplication par un
scalaire (pour y “ 0E). En outre, pour tout x P F , l’opposé ´x de x dans E appartient aussi à F (pour λ “ ´1 et y “ 0E).
Les autres axiomes de la définition des espaces vectoriels ne requièrent aucune vérification particulière puisqu’une relation
vraie sur E tout entier l’est aussi sur F . ■

Exemple 25 La partie F “
␣

px, yq P R2
ˇ

ˇ 2x ´ 3y “ 0
(

est un sous-espace vectoriel de R2.

✎ En pratique ✎

• Pour établir qu’une partie d’un espace vectoriel en est un sous-espace vectoriel, on utilisera toujours la carac-
térisation précédente, qui évite de vérifier la ribambelle d’axiomes de la définition d’un espace vectoriel !

• Pour montrer qu’un ensemble muni d’une addition et d’une multiplication par un scalaire est un espace vecto-
riel, il suffit souvent de montrer qu’il se réalise comme le sous-espace d’un autre espace vectoriel connu. D’où
l’importance des espaces vectoriels classiques donnés en exemple précédemment (exemples et théorèmes 4 à 10).

Exemple 26 Pour tout n P N˚, l’ensemble des matrices triangulaires supérieures (resp. inférieures) de taille n à
coefficients dans K est un sous-espace vectoriel de MnpKq.
En effet, il s’agit bien d’un sous-ensemble de MnpKq qui contient la matrice nulle et nous avons déjà montré que toute
combinaison linéaire de matrices triangulaires supérieures (resp. inférieures) en est encore une (théorème 49 du chapitre 12).

Exemple 27 – Espaces vectoriels KnrXs Pour tout n P N, KnrXs est un sous-espace vectoriel de KrXs.

Attention ! L’ensemble des polynômes de degré égal à n n’est pas un sous-espace vectoriel de KrXs. Il
ne contient même pas le polynôme nul !
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Espaces vectoriels 5

Exemple 28 L’ensemble des fractions rationnelles de degré strictement négatif à coefficients dans K est un sous-espace
vectoriel de KpXq.

Exemple 29
• Pour tout intervalle I non vide, les ensembles C kpI,Kq et DkpI,Kq, pour tout k P N, et C 8pI,Kq sont des

sous-espaces vectoriels du K-espace vectoriel KI des applications de I dans K.
• L’ensemble des suites à valeurs dans K convergentes est un sous-espace vectoriel du K-espace vectoriel KN.

Toute intersection de sous-espaces vectoriels d’un K-espace vectoriel E est encore un sous-espace vectoriel de E.
Théorème 30 – Intersections de sous-espaces vectoriels

Démonstration. ... ■

Attention ! En revanche, la réunion de deux sous-espaces vectoriels
n’est pas un sous-espace vectoriel en général (cf. exercice 7).
La stabilité par addition n’est clairement pas assurée !

G

F

R F Y G

1.4 Sous-espaces vectoriels engendrés par une partie

Soit E un K-espace vectoriel et X une partie de E.
(i) L’intersection de tous les sous-espaces vectoriels de E contenant X est appelé le sous-espace vectoriel (de

E) engendré par X et est noté VectpXq. Il s’agit du plus petit sous-espace vectoriel de E contenant X,
i.e. VectpXq contient X et tout sous-espace vectoriel de E qui contient X contient aussi VectpXq.

(ii) Si X “ txi | i P Iu, alors VectpXq est l’ensemble des combinaisons linéaires de la famille pxiqiPI et est aussi
noté VectpxiqiPI . Autrement dit

VectpxiqiPI “

#

ÿ

iPI

λixi

ˇ

ˇ

ˇ

ˇ

ˇ

pλiqiPI P KpIq

+

.

Définition-théorème 31 – Sous-espaces vectoriels engendrés par une partie

Démonstration. ... ■

Vectpuqu Vectpu, vquv
Vectpu, vq

u

v

✎ En pratique ✎ Pour montrer qu’une partie d’un espace vectoriel en est un sous-espace vectoriel, il suffit souvent
de l’écrire comme un Vect.

Exemple 32 Le sous-espace vectoriel Vectpp1, 2qq est la droite de R2 passant par p0, 0q et dirigée par p1, 2q.

Exercice 33 Plus généralement, si a est un vecteur non nul d’un K-espace vectoriel E, le sous-espace vectoriel
engendré par a est tλa | λ P Ku. On le note aussi K a et on l’appelle la droite vectorielle engendrée par a.

Exemple 34 Pour tout K-espace vectoriel E, VectpHq “ t0Eu.

Exemple 35 KrXs “ Vect
`

Xk
˘

kPN et, pour tout n P N, KnrXs “ Vectp1, X, . . . ,Xnq.

Exemple 36 Le théorème de décomposition en éléments simples des fractions rationnelles sur C énonce en particulier
(partie « existence » du théorème) que

CpXq “ Vect

ˆ

tXn | n P Nu Y

"

1

pX ´ aqn

ˇ

ˇ

ˇ

ˇ

a P C et n P N˚

*˙

.
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6 Espaces vectoriels

Exemple 37 Le plan P de R3 d’équation 2x ´ y ` 3z “ 0 passe par le point p0, 0, 0q et est dirigé par les vecteurs
p1, 2, 0q et p0, 3, 1q. En résumé : P “ Vectpp1, 2, 0q, p0, 3, 1qq.

Exemple 38 Le plan vectoriel P “ Vectpp1, 2, 3q, p2, 1,´1qq de R3 admet pour équation cartésienne 5x´7y`3z “ 0.

Exemple 39 Dans M2pKq, on a T `
2 pKq “ Vectpp 1 0

0 0 q, p 0 1
0 0 q, p 0 0

0 1 qq.

Exemple 40 Si le corps de base est R, VectRp1q “ ta ˆ 1 | a P Ru “ R et VectRp1, iq “ ta ˆ 1 ` b ˆ i | a, b P Ru “ C.
En revanche, si le corps de base est C, VectCp1q “ ta ˆ 1 | a P Cu “ C.

Soit E un K-espace vectoriel, X et Y deux parties de E et x, a, b P E.
(i) Croissance pour l’inclusion. Si X Ă Y , alors VectpXq Ă VectpY q.
(ii) Oter un vecteur. Si x P X est combinaison linéaire de Xztxu, alors VectpXq “ VectpXztxuq.
(iii) Remplacer un vecteur. Si b est combinaison linéaire de X Y tau avec un coefficient non nul sur a,

alors
VectpX Y tauq “ VectpX Y tbuq.

Théorème 41 – Propriétés des Vect

Démonstration. ... ■

Exemple 42 Dans R3 :

Vectpp1, 1, 0q, p0, 1, 0q, p1, 3, 0q
loomoon

q “ Vectpp1, 1, 0q, p0, 1, 0qq “ Vectpp1, 1, 0q ´ p0, 1, 0q, p0, 1, 0qq...

... “ Vectpp1, 0, 0q, p0, 1, 0qq “ R2 ˆ t0u.
Combinaison linéaire
de p1,1,0q et p0,1,0q

2 Sous-espaces affines
Dans l’ensemble de cette section, E et F désignent des K-espaces vectoriels.

2.1 Structure affine d’un espace vectoriel
Dans le plan R2 ou l’espace R3, nous avons l’habitude d’identifier les points et les vecteurs via le choix d’un point

de référence ou origine O. Une telle origine étant fixée, toute relation ÝÝÑ
OM “ u⃗ nous autorise à confondre le point M

et le vecteur u⃗.
Considérer la structure affine d’un K-espace vectoriel E consiste à interpréter les éléments de E comme des points,

via le choix du vecteur nul comme origine O. Dans ce contexte, on note conventionnellement les points avec des
majuscules et les vecteurs avec des lettres minuscules, le plus souvent surmontées par une flèche. En outre, pour deux
points A et B de E, ÝÝÑ

AB désigne le vecteur B ´ A. Avec ces conventions de notations, on a

A “ B ðñ
ÝÝÑ
AB “ 0E ,

ÝÝÑ
BA “ ´

ÝÝÑ
AB, B “ A ` u⃗ ðñ u⃗ “

ÝÝÑ
AB

et on dispose de la relation de Chasles

@A,B,C P E,
ÝÝÑ
AB `

ÝÝÑ
BC “

ÝÑ
AC.

Pour tout vecteur u⃗ de E, on appelle translation de vecteur u⃗ l’application de E dans E définie par

tu⃗ : M ÞÝÑ M ` u⃗.

Définition 43 – Transaltion

On vérifie sans difficulté qu’une composée de translations est une translation. Précisément, tu⃗ ˝ tv⃗ “ tv⃗ ˝ tu⃗ “ tu⃗`v⃗.
On en déduit que la translation tu⃗ est une bijection de réciproque la translation t´u⃗, puisque t0E “ IdE .

Attention ! Si u⃗ ‰ 0E , tu⃗ n’est pas une application linéaire, puisque tu⃗p0Eq “ u⃗ ‰ 0E .
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Espaces vectoriels 7

2.2 Sous-espaces affines

Une partie F du K-espace vectoriel E est appelée un sous-espace affine de E lorsqu’il existe un point Ω de E et
un sous-espace vectoriel F de E tels que

F “ Ω ` F “ tΩ ` u⃗ | u⃗ P F u.

Le cas échéant, le sous-espace vectoriel F associé au sous-espace affine F est unique. On l’appelle la direction de
F et ses éléments sont appelés les vecteurs directeurs de F .

Définition-théorème 44 – Sous-espace affine, direction

Démonstration. Établissons l’unicité de la direction d’un sous-espace affine F . Soit F et F 1 deux sous-espaces vectoriels de E

et x, x1
P E tels que F “ x ` F “ x1

` F 1. Par symétrie des rôles, il suffit de montrer l’inclusion F Ă F 1. Soit f P F , d’une part
x ` f P x ` F “ x1

` F 1, ainsi il existe f 1
1 P F 1 tel que x ` f “ x1

` f 1
1, d’autre part x “ x ` 0E P x ` F , ainsi il existe f 1

2 P F 1

tel que x “ x1
` f 1

2, par conséquent f “ f 1
1 ´ f 1

2 P F 1. ■

Remarque 45
• Le sous-espace affine Ω`F de E est l’image du sous-espace vectoriel F par la

translation de vecteur ÝÑ
OΩ.

• Conventionnellement, nous noterons les sous-espaces vectoriels avec des ma-
juscules droites (F , G, H, ...) et les sous-espaces affines avec des majuscules
rondes (F , G , H , ...).

F

F “ Ω ` F

O

Ω

Soit F un sous-espace affine du K-espace vectoriel E de direction F . Pour tout A P F , on a alors F “ A ` F .
En particulier, deux sous-espaces affines sont égaux si et seulement s’ils ont la même direction et un point en
commun.

Théorème 46 – Caractérisation des sous-espaces affines par leur direction et un point

Démonstration. ... ■

Exemple 47
• Tout sous-espace vectoriel F de E en est un sous-espace affine et il est sa propre direction, dans la mesure où
F “ O ` F . Réciproquement, si un sous-espace affine F de direction F contient O, alors l’égalité F “ O ` F
prouve que F est égal à sa direction et est donc un sous-espace vectoriel.
En résumé, un sous-espace affine est un sous-espace vectoriel si et seulement s’il contient O, i.e. le vecteur nul 0E .

• L’ensemble tp1 ` t, 3 ´ 2t,´1 ` 3tq | t P Ru est un sous-espace affine de R3 passant par le point p1, 3,´1q et dirigé
par Vectpp1,´2, 3qq.

En effet, tp1 ` t, 3 ´ 2t,´1 ` 3tq | t P Ru “ tp1, 3,´1q ` tp1,´2, 3q | t P Ru “ p1, 3,´1q ` Vectpp1,´2, 3qq.

• L’ensemble tP P RrXs | XP 1 ` P “ 2Xu est un sous-espace affine de RrXs passant par le point X et dirigé par le
sous-espace vectoriel tP P RrXs | XP 1 ` P “ 0u.

Soit pFiqiPI une famille de sous-espaces affines du K-espace vectoriel E. Pour tout i P I, on note Fi la direction
de Fi. Les sous-espaces affines Fi, i décrivant I, sont dits concourants ou sécants lorsque

č

iPI

Fi ‰ H.

Le cas échéant,
č

iPI

Fi est un sous-espace affine de E de direction
č

iPI

Fi.

Théorème 48 – Intersection de sous-espaces affines

Démonstration. ... ■

Attention ! Tandis qu’une intersection de sous-espaces vectoriels contient toujours le vecteur nul et ne
saurait donc être vide, une intersection de sous-espaces affines peut effectivement être vide. Il suffit de considérez le
cas de deux droites parallèles non confondues dans le plan.
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8 Espaces vectoriels

Remarque 49 – Parallélisme (HP) La structure affine d’un espace vectoriel permet de définir la notion de parallélisme.
Précisément, pour deux sous-espaces affines F et G d’un K-espace vectoriel E dirigés respectivement par F et G,

• F est dit parallèle à G lorsque F Ă G ;
• F et G sont dits parallèles lorsque F “ G.

Ainsi, dans l’espace usuel R3 une droite peut être parallèle à un plan, deux plans peuvent être parallèles, mais un plan
n’est jamais parallèle à une droite.

3 Familles de vecteurs
Dans l’ensemble de cette section, E et F désignent des K-espaces vectoriels et n désigne un entier naturel. Par

convention, une liste pxiq1ďiď0 d’éléments de E correspond à la famille vide, i.e. l’ensemble vide.

3.1 Familles et parties génératrices

Soit X une partie du K-espace vectoriel E. On dit que la partie X est génératrice de E ou engendre E lorsque
tout élément de E est combinaison linéaire d’éléments de X, i.e. E “ VectpXq.
En particulier, si X “ txi | i P Iu, on dit aussi que la famille pxiqiPI est génératrice de E ou engendre E.

Définition 50 – Partie/famille génératrice

Exemple 51 La famille
`

Xk
˘

kPN engendre KrXs et la famille p1, X, . . . ,Xnq engendre KnrXs.

Exemple 52
• Pour tout px, yq P K2, px, yq “ xp1, 0q ` yp0, 1q, ainsi pp1, 0q, p0, 1qq est une famille génératrice de K2.
• De même, pour tout px, y, zq P K3, px, y, zq “ xp1, 0, 0q ` yp0, 1, 0q ` zp0, 0, 1q, donc pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq

engendre K3.
• Plus généralement, pour n P N˚, posons e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, . . . , en “ p0, . . . , 0, 1q, autrement

dit ei “ pδi,jq1ďjďn, pour tout i P J1 , nK. La famille peiq1ďiďn est une famille génératrice de Kn.
En effet, pour tout px1, . . . , xnq P Kn, px1, . . . , xnq “ x1e1 ` . . . ` xnen.

Exemple 53 La famille
ˆˆ

1 0
0 0

˙

,

ˆ

0 1
0 0

˙

,

ˆ

0 0
1 0

˙

,

ˆ

0 0
0 1

˙˙

engendre M2pKq, puisque, pour tout a, b, c, d P K,

ˆ

a b
c d

˙

“ a

ˆ

1 0
0 0

˙

` b

ˆ

0 1
0 0

˙

` c

ˆ

0 0
1 0

˙

` d

ˆ

0 0
0 1

˙

.

Plus généralement, pour tout n, p P N˚, i P J1 , nK et j P J1 , pK, notons Ei,j la matrice élémentaire de Mn,ppKq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1. La famille pEi,jq1ďiďn

1ďjďp
est alors génératrice de

Mn,ppKq, puisque, pour tout A P Mn,ppKq, A “
ÿ

1ďiďn
1ďjďp

ai,jEi,j (corollaire 9 du chapitre 12).

Exemple 54 La famille p1, iq engendre le R-espace vectoriel C, mais p1q suffit à engendrer le C-espace vectoriel C.

Le théorème qui suit n’est pour l’essentiel qu’une simple reformulation du théorème 41 de propriétés des Vect.

Soit X et Y deux parties du K-espace vectoriel E.
(i) Inclusion. Si X engendre E et si X Ă Y , alors Y engendre E.

(Toute « sur-famille » d’une famille génératrice est génératrice.)
(ii) Oter un vecteur. Si X engendre E et si x P VectpXztxuq, alors Xztxu engendre E.
(iii) Remplacer un vecteur. Si X Y tau engendre E et si b est combinaison linéaire de X Y tau avec un

coefficient non nul sur a, alors X Y tbu engendre E.

Théorème 55 – Propriétés des parties génératrices
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Espaces vectoriels 9

Soit X une partie génératrice de E. Une partie Y de E engendre E si et seulement si tout vecteur de X est
combinaison linéaire de vecteurs de Y , i.e. X Ă VectpY q.

Corollaire 56

Démonstration. Soit Y une partie de E.
• Supposons que X Ă VectpY q. Alors E “ VectpY q, dans la mesure où

E “ VectpXq Ă VectpVectpY qq “ VectpY q Ă E.

• Supposons que Y engendre E. Alors X Ă E “ VectpY q. ■

✎ En pratique ✎ Trouver une partie génératrice d’un sous-espace vectoriel revient à l’écrire comme un Vect.

Exemple 57 L’ensemble E “
␣

px, y, z, tq P R4
ˇ

ˇ x ` 2y ´ z “ 0 et x ´ y ` t “ 0
(

est un sous-espace vectoriel de R4

engendré par la famille pp1, 0, 1,´1q, p0, 1, 2, 1qq.

Exemple 58 L’ensemble F “ tP P R3rXs | 2P pX ` 1q “ XP 1u est un sous-espace vectoriel de R3rXs engendré par
X2 ´ 4X ` 3.

3.2 Familles et parties libres ou liées

Soit x1, . . . , xn des vecteurs du K-espace vectoriel E. La partie tx1, . . . , xnu ou la famille pxiq1ďiďn est dite libre
ou les vecteurs x1, . . . , xn sont dits linéairement indépendants lorsque

@pλiq1ďiďn P Kn,

˜

n
ÿ

i“1

λixi “ 0E ùñ λ1 “ . . . “ λn “ 0

¸

.

Définition 59 – Partie/famille libre d’un nombre fini de vecteurs

Quitte à remplacer λi par λi ´µi dans la définition de la liberté, on peut aussi dire que pxiq1ďiďn est libre lorsque

@pλiq1ďiďn, pµiq1ďiďn P Kn,

˜

n
ÿ

i“1

λixi “

n
ÿ

i“1

µixi ùñ @i P J1 , nK, λi “ µi

¸

,

ce qui n’est rien d’autre qu’un principe d’identification. En résumé :

Famille génératrice = Existence pour tout vecteur d’une décomposition comme combinaison linéaire.

Famille libre = Unicité des coefficients dans les combinaisons linéaires,
ce qui autorise les identifications.

• Soit x1, . . . , xn des vecteurs du K-espace vectoriel E. La partie tx1, . . . , xnu ou la famille pxiq1ďiďn est dite liée
ou les vecteurs x1, . . . , xn sont dits linéairement dépendants lorsque la famille pxiq1ďiďn n’est pas libre. Ceci
équivaut à ce qu’au moins un des vecteurs x1, . . . , xn soit combinaison linéaire des autres.

• Soit x, y deux vecteurs du K-espace vectoriel E. Les vecteurs x et y sont dits colinéaires lorsque la paire tx, yu

est liée, i.e. lorsque x ou y est un multiple de l’autre.

Définition 60 – Partie/famille liée d’un nombre fini de vecteurs, couple de vecteurs colinéaires

Dire que pxiq1ďiďn est liée revient à dire qu’il existe λ1, . . . , λn P K tels que
˜

n
ÿ

i“1

λixi “ 0E et Di0 P J1 , nK, λi0 ‰ 0

¸

,

auquel cas xi0 “ ´
1

λi0

ÿ

1ďiďn
i‰i0

λixi, i.e. xi0 est « combinaison linéaire des autres xi ».
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10 Espaces vectoriels

Attention ! L’assertion « Dλ P K, x “ λy » ne suffit pas pour exprimer que deux vecteurs x et y sont
colinéaires. En effet, si x “ 0E et y ‰ 0E , la famille px, yq est liée, mais il n’existe aucun scalaire λ tel que y “ λx.

Exemple 61 Soit n P N˚. Posons e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, ..., en “ p0, . . . , 0, 1q.
La famille peiq1ďiďn est libre dans Kn – principe d’identification des coefficients d’une famille de scalaires.

En effet, pour tout pλ1, . . . , λnq P Kn,
n
ÿ

i“1

λiei “ pλ1, . . . , λnq, ainsi l’égalité
n
ÿ

i“1

λiei “ p0, . . . , 0q implique directement

λ1 “ . . . “ λn “ 0.

Exemple 62 Soit n, p P N˚. Notons, pour tout i P J1 , nK et j P J1 , pK, Ei,j la matrice élémentaire de Mn,ppRq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1. La famille pEi,jq1ďiďn

1ďjďp
est alors libre dans Mn,ppRq

– principe d’identification des coefficients d’une matrice.

Exemple 63 La famille pp2, 1q, p´1, 3q, p0, 2qq est liée dans R2.

Exemple 64 La famille
`

X2 ´ X ` 1, X2 ` X ´ 2, X2 ´ 2X ` 3
˘

est libre dans RrXs.

Exemple 65 La famille psin, cosq est libre dans RR.

Exemple 66 La famille p1, iq est libre dans le R-espace vectoriel C – principe d’identification des parties réelle
et imaginaire – mais liée dans le C-espace vectoriel C.
En effet, la famille est liée sur C puisque i “ i ˆ 1.

Exemple 67 Toute partie/famille de vecteurs qui contient le vecteur nul est liée.
En effet, le vecteur nul est combinaison linéaire – à coefficients tous nuls - de n’importe quelle famille de vecteurs.

Exemple 68 – Famille formée d’un vecteur Toute partie txu/famille pxq formée d’un seul vecteur est libre si et
seulement si x n’est pas le vecteur nul (conséquence directe du point (i) du théorème 3).

Exemple 69 – Famille de polynômes échelonnée en degré (à connaître !)
Toute famille pP1, . . . , Pnq de polynômes non nuls de KrXs pour laquelle degP1 ă . . . ă degPn est libre. Une telle
famille est dite échelonnée en degré. Cet exemple est vital !

Exemple 70 – Famille échelonnée de vecteurs de Kn

Soit pu1, . . . , upq, avec p P N˚, une famille de vecteurs non nuls de Kn. Pour tout k P J1 , pK, notons ik l’indice de
la première coordonnée non nulle de uk. La famille pu1, . . . , upq est dite échelonnée lorsque la suite pi1, . . . , ipq est
strictement croissante. Le cas échéant, la famille pu1, . . . , upq est libre.

La famille pp1, 0, 2,´1q, p0, 0,´4, 2q, p0, 0, 0,´5qq est une famille échelonnée de vecteurs de R4 et est donc libre.

Soit pxiqiPI une famille de vecteurs du K-espace vectoriel E.
• La famille pxiqiPI ou la partie txi | i P Iu est dite libre lorsque

@pλiqiPI P KpIq,

˜

ÿ

iPI

λixi “ 0E ùñ @i P I, λi “ 0

¸

.

• La famille pxiqiPI ou la partie txi | i P Iu est dite liée lorsque la famille pxiqiPI n’est pas libre. Ceci équivaut à
ce qu’au moins un des vecteurs xi soit combinaison linéaire des autres.

Définition 71 – Partie/famille libre/liée d’un nombre quelconque de vecteurs

La quantification portant sur les familles presque nulles de scalaires pλiqiPI , on est systématiquement ramené à des
combinaisons linéaires d’un nombre fini de vecteurs. Ainsi la liberté d’une famille quelconque de vecteurs équivaut,
par définition, à la liberté de toutes ses sous-familles finies. En particulier, une famille pxnqnPN de vecteurs est libre
si et seulement si la famille pxiq0ďiďn est libre, pour tout n P N.
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Exemple 72 L’ensemble vide est une partie libre de tout K-espace vectoriel.

Exemple 73 pXnqnPN est une famille libre de KrXs – principe d’identification des coefficients d’un polynôme.

Soit X et Y deux parties du K-espace vectoriel E, et y un vecteur de E.
(i) Inclusion. Si Y est libre et si X Ă Y , alors X est libre.

Par contraposition, si X est liée et si X Ă Y , alors Y est liée.
(Toute « sous-famille » d’une famille libre est libre / Toute « sur-famille » d’une famille liée est liée.)

(ii) Ajout d’un vecteur. Si X est libre, alors X Y tyu est libre si et seulement si y R VectpXq.

Théorème 74 – Propriétés des parties libres/liées

Démonstration. ... ■

On déduit en particulier du point (i) qu’une famille libre ne saurait contenir deux vecteurs colinéaires, et a fortiori
deux vecteurs égaux.

Attention ! Une famille contenant deux vecteurs colinéaires est liée, mais une famille d’au moins trois
vecteurs peut être liée sans contenir deux vecteurs colinéaires (cf. exemple 63).

Dire qu’une famille est libre revient à dire qu’aucun de ses vecteurs n’est combinaison linéaire des autres. Ainsi,
si l’on veut que l’ajout d’un vecteur conserve la liberté d’une famille libre, il est nécessaire de ne pas introduire de
dépendance entre ses vecteurs, autrement dit veiller à n’ajouter que des vecteurs linéairement indépendants de ceux
déjà présents.

3.3 Bases

Soit B “ peiqiPI une famille de vecteurs du K-espace vectoriel E.
• On dit que B est une base de E lorsque B est une famille libre et génératrice de E, i.e. si et seulement si tout

vecteur de E s’écrit d’une unique façon comme une combinaison linéaire de vecteurs de B.
• Le cas échéant, pour tout x P E, l’unique famille presque nulle de scalaires pxiqiPI P KpIq pour laquelle
x “

ÿ

iPI

xiei est appelée la famille des coordonnées de x dans la base B.

Définition 75 – Base, coordonnées

Les bases sont toujours des familles et non des ensembles. En effet, dans le plan muni d’une base, peut-on parler du
point de coordonnées t1, 2u ? Clairement non, puisque le point de coordonnées p1, 2q n’est pas le point de coordonnées
p2, 1q ! L’ordre des éléments a ici une importance cruciale.

Exemple 76 La famille p1, iq est une base du R-espace vectoriel C et les coordonnées d’un nombre complexe dans
cette base sont ses parties réelle et imaginaire.

Remarque 77 – Convention de la base vide Le K-espace vectoriel E trivial t0Eu réduit au vecteur nul possède
une unique base : l’ensemble vide (cf. exemples 34 et 72).

L’énoncé suivant est une synthèse des exemples précédents (cf. exemples 51 à 53, 61, 62 et 73).

• Familles de scalaires. Pour tout n P N˚, on pose e1 “ p1, 0, . . . , 0q, e2 “ p0, 1, 0, . . . , 0q, . . . , en “ p0, . . . , 0, 1q.
La famille peiq1ďiďn est une base de Kn – dite base canonique.

• Polynômes. La famille
`

Xk
˘

kPN est une base de KrXs – dite base canonique – et, pour tout n P N, la famille
`

Xk
˘

0ďkďn
est une base de KnrXs – aussi dite base canonique.

• Matrices. Pour tout n, p P N˚, on note, pour tout i P J1 , nK et j P J1 , pK, Ei,j la matrice de Mn,ppKq dont
tous les coefficients sont nuls sauf celui en position pi, jq, égal à 1.
La famille pEi,jq1ďiďn

1ďjďp
est une base de Mn,ppKq – dite base canonique.

Définition-théorème 78 – Bases canoniques de Kn, KrXs, KnrXs et Mn,ppKq
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Le qualificatif « canonique » doit être compris au sens de « la plus naturelle ». On veillera à ne pas l’utiliser à tort
et à travers ! De fait, les bases exhibées ci-dessus sont les plus naturelles, les plus faciles d’emploi auxquelles on peut
penser dans Kn, KrXs, KnrXs et Mn,ppKq.

• Pour tout px1, . . . , xnq P Kn les coordonnées de px1, . . . , xnq dans la base canonique sont... ce vecteur lui-même !
On peut difficilement faire plus simple.

• Pour tout P “

`8
ÿ

k“0

akX
k P KrXs, la famille des coordonnées de P dans la base canonique est la famille pakqkPN

de ses coefficients, i.e. P lui-même si l’on veut bien se rappeler qu’un polynôme est par définition une suite
presque nulle de scalaires.

• Pour tout A P Mn,ppKq, la famille de coordonnées de A dans la base canonique est paijq1ďiďn
1ďjďp

... i.e. A elle-même.

Exemple 79 La famille pp1, 1q, p1,´2qq est une base de R2.

Exercice 80 La famille
`

X2 ` X,X2 ` 1, X ` 1
˘

est une base de R2rXs.

✎ En pratique ✎ Pour déterminer une base d’un espace vectoriel, on en cherche initialement une famille génératrice
en écrivant celui-ci comme un Vect, puis on essaie d’établir que la famille obtenue est libre.

Exemple 81 La famille pp2, 1, 1qq est une base du sous-espace vectoriel A de R3 défini par
"

2x ´ y ´ 3z “ 0
3x ´ 2y ´ 4z “ 0.

Exercice 82 L’ensemble F des matrices M P M2pRq telles que MJ “ M ` trpMqI2 est un sous-espace vectoriel de
M2pRq de base

``

1 0
0 ´1

˘

, p 0 1
1 0 q

˘

.

Exemple 83 – Base des polynômes de Lagrange Soit x0, . . . , xn P K distincts et L0, . . . , Ln les polynômes de
Lagrange associés à ces n ` 1 points. La famille pL0, . . . , Lnq est alors une base de KnrXs et les coordonnées d’un
polynôme P P KnrXs dans cette base sont pP px0q, . . . , P pxnqq.
En effet, le théorème 48 du chapitre 17 établit que, pour tout P P KnrXs et y0, . . . , yn P K,

P “

n
ÿ

i“0

yiLi ðñ @i P J0 , nK, yi “ P pxiq.

Exemple 84 – Interprétation de la formule de Taylor polynomiale Supposons que K est un sous-corps de C.
Pour tout α P K, la famille

`

pX ´ αqk
˘

kPN est une base de KrXs et les coordonnées d’un polynôme P P KrXs dans

cette base sont
´

P pkq
pαq

k!

¯

kPN
.

4 Sommes de sous-espaces vectoriels
Dans l’ensemble de cette section, E désigne un K-espace vectoriel.

4.1 Définition
Nous avons vu à l’exercice 7 qu’une union de deux sous-espaces vectoriels F et G de E n’est pas en général un

sous-espace vectoriel, ce qui nous amène à considérer le plus petit sous-espace vectoriel de E contenant F et G.

Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E.
• L’ensemble F ` G “ tf ` g | f P F et g P Gu est un sous-espace vectoriel de E, appelé la somme de F et G.
• La somme F ` G est aussi le plus petit sous-espace vectoriel de E contenant F et G, ce qui signifie que tout

sous-espace vectoriel de E contenant F et G contient également F `G. Autrement dit, F `G “ VectpF Y Gq.

Définition-théorème 85 – Somme de deux sous-espaces vectoriels
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Démonstration. Cf. exercice 7. ■

Attention ! Il ne faut pas confondre somme et réunion !
La somme est un sous-espace vectoriel, mais pas la réunion en général.

Exemple 86 E `E “ E, E ` t0Eu “ E et t0Eu ` t0Eu “ t0Eu. F

G

F Y G

F ` G

Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E et X et Y deux parties de E. On a toujours

VectpX Y Y q “ VectpXq ` VectpY q.

Autrement dit, si X et Y sont respectivement des parties génératrices de F et G, alors X Y Y est une partie
génératrice de F ` G.

Théorème 87 – Partie génératrice d’une somme de deux sous-espaces vectoriels

Démonstration. ... ■

Attention ! Le théorème précédent est faux si l’on remplace « partie génératrice » par « partie libre ».
Ainsi, si X et Y engendrent respectivement F et G, X Y Y engendre F ` G, mais si X et Y sont en outre libres (et
donc associées à des bases respectives de F et G), on ne peut rien dire en général de la liberté de X Y Y . En effet, les
vecteurs de F X G sont à la fois combinaisons linéaires de X et combinaisons linéaires de Y .

Exemple 88 Les droites vectorielles F “ Vectpp1, 0, 0qq et G “ Vectpp0, 1, 0qq de R3 ont pour somme le plan d’équation
z “ 0.

4.2 Somme directe

Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E. Les sous-espaces F et G sont dits en somme
directe lorsque la décomposition d’un vecteur de la somme F ` G comme somme d’un vecteur de F et d’un
vecteur de G est toujours unique, i.e.

@f, f 1 P F, @g, g1 P G,
`

f ` g “ f 1 ` g1 ùñ f “ f 1 et g “ g1
˘

.

On note alors F ‘ G la somme F ` G pour indiquer que la somme est directe.

Définition 89 – Somme directe de deux sous-espaces vectoriels

Il est important de saisir que, lorsque la somme est directe, les notations F ` G et F ‘ G désignent le même
ensemble de vecteurs, la seconde notation ayant l’avantage d’apporter une précision concernant une propriété de cette
somme.

Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E. Les assertions suivantes sont équivalentes
(i) F et G sont en somme directe.
(ii) F X G “ t0Eu.
(iii) @pf, gq P F ˆ G, pf ` g “ 0E ùñ f “ g “ 0Eq,

autrement dit la seule décomposition de 0E dans F ` G est la décomposition triviale 0E “ 0E ` 0E .

Théorème 90 – Caractérisation de la somme directe de deux sous-espaces vectoriels

Démonstration. ... ■

Exemple 91 Dans K3, le plan F “
␣

px, y, zq P K3
ˇ

ˇ x ` y ` z “ 0
(

et la droite G “
␣

px, y, zq P K3
ˇ

ˇ x “ y “ z
(

sont
en somme directe.
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Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E. On suppose que F et G possèdent chacun une
base, notées respectivement B et C . Les sous-espaces F et G sont en somme directe si et seulement si la famille
obtenue par concaténation des bases B et C est une base de F ` G.
Le cas échéant, une telle base dont les premiers vecteurs forment une base de F et les suivants une base de G est
dite adaptée à la somme directe F ‘ G.

Théorème 92 – Bases de la somme directe de deux sous-espaces vectoriels

Démonstration. ... ■

Exemple 93 La famille pp´1, 1, 0q, p´1, 0, 1q, p1, 1, 1qq est une base adaptée à la somme directe F ‘ G de l’exemple
91.

En particulier, en « coupant » une base B en deux sous-familles (libres donc !) B1 et B2, les sous-espaces engendrés
par B1 et B2 respectivement sont en somme directe. On en déduit le corollaire suivant.

Soit pxiqiPI une famille libre de vecteurs du K-espace vectoriel E. Si pI1, I2q est une partition de I, alors les
sous-espaces vectoriels VectpxiqiPI1 et VectpxiqiPI2 de E sont en somme directe.

Corollaire 94 – Obtention d’une somme directe à partir d’une famille libre

4.3 Supplémentaires d’un sous-espace vectoriel

Soit F et G deux sous-espaces vectoriels du K-espace vectoriel E. Les assertions suivantes sont équivalentes
(i) Tout vecteur de E s’écrit de manière unique comme la somme d’un élément de F et d’un élément de G

@x P E, D!pf, gq P F ˆ G, x “ f ` g.

(ii) L’espace E est la somme directe de F et G, i.e. E “ F ‘ G.
Le cas échéant, les sous-espaces F et G sont dits supplémentaires dans E. On dit aussi que F est un supplémentaire
de G dans E et que G est un supplémentaire de F dans E.

Définition-théorème 95 – Sous-espaces vectoriels supplémentaires

Ainsi deux sous-espaces vectoriels de E sont supplémentaires si leur somme
est la plus grande possible, i.e. E tout entier, et leur intersection la plus petite
possible, i.e. t0Eu. Il est classique d’illustrer cette situation par des figures dans
R3 censées représenter schématiquement le cas général.

f

g

x

F

G

0E

Attention !
• Il ne faut pas confondre les notions de « supplémentaire dans E » et de « somme directe ».

Dire que F et G sont en somme directe revient à affirmer que tout vecteur de E admet au plus une décomposition
comme somme d’un vecteur de F et d’un vecteur de G. Pour être précis, les vecteurs de F `G ont alors exactement
une décomposition de cette forme, tandis que ceux de EzpF ` Gq n’en ont pas.
Dire que F et G sont supplémentaires dans E revient à affirmer en plus que E “ F ` G et donc que tout vecteur
de E admet exactement une décomposition comme somme d’un vecteur de F et d’un vecteur de G.

• Un sous-espace vectoriel possède-t-il toujours un supplémentaire ? Oui, toutefois nous le démontrerons seulement
en dimension finie (cf. chapitre 23).

• Il est interdit de parler « du » supplémentaire d’un sous-espace vectoriel en général, faute d’unicité (cf. exemples
96 et 97 ci-dessous).

• Il ne faut pas non plus confondre la notion vectorielle de « supplémentaire » avec celle ensembliste de « complé-
mentaire ». D’une part, il y a absence d’unicité pour la supplémentarité, alors qu’il y a unicité du complémentaire.
D’autre part, un supplémentaire est un sous-espace vectoriel, tandis que le complémentaire d’un sous-espace vec-
toriel ne contient même pas le vecteur nul.

Exemple 96 Deux droites non confondues passant par p0, 0q sont toujours supplémentaires dans R2.
Si P est un plan de R3 passant par p0, 0, 0q et D une droite de R3 passant par p0, 0, 0q non contenue dans P , alors
P et D sont supplémentaires dans R3.
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Exemple 97 La droite Gα “ Vectpp1, α, 1qq est un supplémentaire de F “
␣

px, y, zq P R3
ˇ

ˇ x ` y ` z “ 0
(

dans R3,
pour tout α ‰ ´2.

Exemple 98 Supposons 2 ‰ 0 dans K. L’ensemble SnpKq des matrices symétriques et l’ensemble AnpKq des matrices
antisymétriques sont supplémentaires dans MnpKq.

Exemple 99 Pour tout P P KrXs non nul de degré n ě 1, KrXs “ PKrXs‘Kn´1rXs, où PKrXs “ tPQ | Q P KrXsu.
En effet, Kn´1rXs et PKrXs sont des sous-espaces vectoriels de KrXs et on souhaite établir que

@A P KrXs, D!pQ,Rq P KrXs ˆ Kn´1rXs, A “ PQ ` R,

ce qui correspond au théorème de la division euclidienne dans KrXs.

Exemple 100 L’existence et l’unicité de la partie entière d’une fraction rationnelle prouve que KrXs et l’ensemble
des fractions rationnelles de degré strictement négatif sont deux sous-espaces vectoriels supplémentaires de KpXq

(théorème 12 du chapitre 18).

5 Structure d’algèbres (programme de MP)

Nous savons maintenant que deux structures algébriques cohabitent sur les ensembles KrXs, MnpKq et KI (avec
I un intervalle de R) : une structure d’anneau et une structure de K-espace vectoriel.

Remarquons alors que cette cohabitation ne se fait pas de façon totalement indépendante pour la loi de multipli-
cation interne liée à la structure d’anneau et celle de multiplication externe liée à la structure de K-espace vectoriel.
Par exemple, pour tout λ P K,

@P,Q P KrXs, pλP qQ “ P pλQq “ λpPQq et @A,B P MnpKq, pλAqB “ ApλBq “ λpABq.

La définition suivante propose de formaliser ces observations.

On appelle K-algèbre (ou algèbre sur K) tout quadruplet pE,`,ˆ, ¨q vérifiant
(i) pE,`, ¨q est un K-espace vectoriel ;
(ii) pE,`,ˆq est un anneau ;
(iii) @λ P K, @x, y P E, pλxq ˆ y “ x ˆ pλyq “ λpx ˆ yq.

On qualifie de commutative toute algèbre dont l’anneau sous-jacent est commutatif.

Définition 101 – Algèbre sur un corps

Exemple 102
• Pour tout corps pK,`,ˆq, le quadruplet pK,`,ˆ,ˆq est une K-algèbre.
• Le corps C est à la fois muni d’une structure de C-algèbre et de R-algèbre.

Plus généralement, si K est un corps et L un sous-corps de K, alors K est muni d’une structure de K-algèbre et
aussi de L-algèbre.

• Les quadruplets pKrXs,`,ˆ, ¨q et pMnpKq,`,ˆ, ¨q, avec n P N˚, sont des K-algèbres.
• Si E est une K-algèbre et X un ensemble non vide, alors EX est naturellement muni d’une structure de K-algèbre

(cf. théorème 9 ci-dessus et théorème 57 du chapitre 11). En particulier, l’ensemble KX des fonctions définies
sur X et à valeurs dans le corps K est muni d’une structure de K-algèbre.

On appelle morphisme d’algèbres toute application entre deux K-algèbres qui est simultanément une application
linéaire et un morphisme d’anneaux.

Définition 103 – Morphisme d’algèbres

On définit aussi de façon classique les notions d’endomorphismes, d’isomorphismes et d’automorphismes d’algèbres.

Exemple 104
• La conjugaison est un automorphisme de la R-algèbre C (mais pas pour la structure de C-algèbre !).
• Soit R P KrXs. L’application de composition à droite P ÞÝÑ P ˝R est un endomorphisme de la K-algèbre KrXs.
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Exemple 105 – Évaluation polynomiale en un élément d’une K-algèbre
• Soit α P K. L’application d’évaluation P ÞÝÑ P pαq est un morphisme (surjectif) d’algèbres de KrXs sur K.
• Soit M P MnpKq, avec n P N˚. L’application d’évaluation P ÞÝÑ P pMq est un morphisme d’algèbres de KrXs

dans MnpKq.
• Plus généralement, si E est une K-algèbre et x un élément de E, alors l’application d’évaluation P ÞÝÑ P pxq est

un morphisme d’algèbres de KrXs dans E.
• En particulier, pour Q P KrXs, l’application d’évaluation P ÞÝÑ P pQq est un endomorphisme de la K-algèbre
KrXs. Cela légitime la notation P pQq de la composition P ˝ Q (cf. définition 21 du chapitre 14).

Soit pE,`,ˆ, ¨q une K-algèbre. On appelle sous-algèbre de E toute partie de E stable pour les lois `, ˆ et ¨, et
qui est une K-algèbre pour les lois induites par celles de E.

Définition 106 – Sous-algèbre

Comme toujours, on préférera en pratique la caractérisation suivante pour établir qu’une partie est une sous-algèbre.

Soit E une K-algèbre. Une partie F de E est une sous-algèbre de E si et seulement si elle vérifie les deux assertions
suivantes

(i) F est un sous-anneau de E ; (ii) F est stable pour la loi externe « ¨ ».

Théorème 107 – Caractérisation des sous-algèbres

Exemple 108 Soit n un entier naturel non nul.
• L’ensemble R est une sous-algèbre de la R-algèbre C.
• Plus généralement, MnpRq est une sous-algèbre de la R-algèbre MnpCq.
• Les ensembles de matrices T `

n pKq, T ´
n pKq, DnpKq et K ¨ In sont des sous-algèbres de MnpKq.

• Soit I un intervalle de R. Les ensembles C pI,Kq, C kpI,Kq, C 8pI,Kq et DkpI,Kq sont des sous-algèbres de KI .

Attention ! Pour tout n P N˚, KnrXs n’est pas une sous-algèbre de KrXs, dans la mesure où ce sous-
ensemble n’est pas stable par produit.

Compétences à acquérir
• Montrer qu’un ensemble est muni d’une structure de (sous-)espace vectoriel : exercices 5 à 7.
• Déterminer si un vecteur est combinaison linéaire d’une famille de vecteurs : exercices 3 et 4.
• Manipulation des Vect : exercices 8 à 11.
• Montrer qu’une famille de vecteurs est génératrice : exercices 14 et 22.
• Montrer qu’une famille de vecteurs est libre/liée : exercices 15 à 25.
• Montrer qu’une famille de vecteurs est une base : exercices 26 à 28.
• Déterminer une base d’un espace vectoriel : exercices 29 à 30.
• Déterminer les coordonnées d’un vecteur dans une base : exercices 26 et 27.
• Montrer que deux sous-espaces sont en somme directe : exercice 32.
• Montrer que deux sous-espaces sont supplémentaires : exercices 32 à 39.

Quelques résultats classiques :
• Famille de polynômes échelonnée en degré (exemple 69).
• Famille échelonnée de vecteurs de Kn (exemple 70).
• Base des polynômes de Lagrange (exemple 83).
• Interprétation de la formule de Taylor polynomiale (exemple 84).
• Supplémentarité de SnpKq et AnpKq dans MnpKq (exemple 98).
• Unions, intersections et sommes de sous-espaces vectoriels(exercice 7).
• Familles libres de fonctions (exercice 24).
• Supplémentarité des sous-espaces de fonctions paires et impaires (exemple 35).
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