21 | Espaces vectoriels

Dans I'ensemble de ce chapitre, K désigne I'un des corps R ou C et I est un ensemble non vide quelconque. '
Nous complétons notre étude des structures algébriques débutée au chapitre 11 avec la présentation de la structure
fondamentale d’espace vectoriel, sur laquelle est basée 1’algébre linéaire (étude des applications linéaires).

Espaces vectoriels et combinaisons linéaires

iIWE  Structure d’espace vectoriel

Définition 1 — Espace vectoriel

Soit K un corps et E un ensemble muni d’une loi de composition interne, notée + et appelée loi d’addition, et
d’une loi externe, notée - et appelée loi de multiplication externe par un scalaire, i.e. une application

KxE — E
Nz) — Aoz
On dit que le triplet (E, +,-) est un K-espace vectoriel, ou un espace vectoriel sur K, lorsque
e (E,+) est un groupe abélien ;
e pour tous z,y€ Eet \,pe K,
(i) (associativité mizte) M- (p-x) = (Au)-xz; (i) (distributivité mizte 1) N-(x+y)=A-x+ X y;
(i) (neutralité mizte) 1-z = x; (iv) (distributivité mizte 2) (A+p)-z=X-x+p-z.

Les éléments de E sont appelés des vecteurs et ceux de K des scalaires, ces derniers agissant sur les vecteurs par
I'intermédiaire de la loi externe.

La structure d’espace vectoriel, qui peut sembler hermétique au premier abord, est omniprésente en mathématiques.
En mener ’étude systématique s’impose donc.

On peut évidemment s’interroger sur l'origine de la terminologie d’« espace vectoriel » et de « vecteurs » dans un
cadre aussi abstrait. La réponse étant que les régles de la définition précédentes sont exactement celles classiquement
vérifiées par les vecteurs usuels du plan et de ’espace. Dorénavant, les vecteurs pourront désigner des objets aussi
divers que des matrices, des polynémes, des fonctions ou des suites, que 'on pourra ainsi s’efforcer de visualiser
géométriquement.

Remarque 2

e Un espace vectoriel E est nécessairement non vide, puisqu’il contient toujours le vecteur nul Og (élément neutre
de la loi additive du groupe abélien (F,+)).

e On écrit la plupart du temps « Az » en lieu et place de « A -z », pour A € K et « € E. Conventionnellement, on
écrit le scalaire a gauche et le vecteur a droite.

e En géométrie, il est d’usage de noter les vecteurs & avec une fléche. En revanche, on utilise usuellement la notation
plus légére sans fleche pour les vecteurs d’un espace vectoriel quelconque. Il faudra donc étre vigilant et veiller a
ne pas confondre vecteurs et scalaires au sein d’'une méme expression.

—— Théoréme 3 — Régles de calcul dans un espace vectoriel
Soit E un K-espace vectoriel.

(i) Pour tous z € F et A € K, AMx=0g < A=0 ou z=0g.
(ii) Pour tout z € E, (-1) -z =—ux, ol —z est 'opposé de x dans E et —1 I'opposé de 1 dans K.
Démonstration. ... ]

% ArTeEnTION ! &  On veillera a ne pas confondre 0z I'élément nul de I'espace vectoriel E avec 0 1'élément nul
de 'ensemble des scalaires K. L’élément Og est un vecteur tandis que 0 est un scalaire!

1. Tous les résultats énoncés dans ce chapitre demeurent vrais sur un corps K quelconque.
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Exemple 4 — K-espace vectoriel K La structure de corps de K confére au triplet (K, +, x) une structure d’espace
vectoriel sur lui-méme, la multiplication classique x dans K étant assimilée a la loi de multiplication externe par un
scalaire « - ».

Les deux théorémes suivants sont analogues a ceux énoncés au chapitre 11 pour les structures de groupe et d’anneau.

—— Théoréme 5 — Espace vectoriel produit

Soit E,..., E, des K-espaces vectoriels. On munit £y x ... x E,, de deux lois + et - en posant, pour tous A € K
et (z1,...,2n), (Y1,.-.-,yn) € E1 X ... X E, :

(X1, sxn) + (W1, Un) = (1 + Y1y, T+ Yn) €8 A (T, @n) = (A 21,00, A 2y).

Alors (Ey x ... x B, +, ) est un K-espace vectoriel. Notons que Og, x..xg, = (0g,,...,0g,).

Démonstration. Simple vérification des axiomes de la définition. |

n fois

- - . . f_/% .
Exemple 6 — Familles de scalaires En particulier, K™ = K x ... x K est un K-espace vectoriel, pour tout n € N*,
en vertu de ’exemple 4 et du théoréme précédent.

On retrouve ici le cadre des vecteurs du plan avec R? et celui des vecteurs de I’espace avec R3.
Par exemple, (1,4,—3) +2-(0,2,5) = (1,8,7) — les opérations se faisant coordonnées par coordonnées.

Exemple 7 — Matrices  Pour tous n,p € N*, (/, ,(K), +, -) est un K-espace vectoriel pour ses lois usuelles d’addition
et de multiplication par un scalaire.

En effet, il s’agit d’une reformulation du théoréme 7 du chapitre 12.

Exemple 8 — Polynémes et fractions rationnelles K[X] et K(X) sont des K-espace vectoriel pour leurs lois usuelles
d’addition et de multiplication par un scalaire.

En effet, il s’agit d’une simple vérification des axiomes de la définition.

—— Théoréme 9 — Espace vectoriel de fonctions

Soit X un ensemble non vide et £ un K-espace vectoriel. On munit I'ensemble EX des fonctions de X dans F
de deux lois + et - en définissant, pour tous f,g e EX et A € K, les fonctions f + g et A f par :

Vee X, (f+9)@)=f()+g(x) et (A f)x) =X (f(2))

Alors (EX ,+, ) est un K-espace vectoriel. Notons que Ogx est la fonction nulle z — Op de X dans E.

Démonstration. Simple vérification des axiomes de la définition. |

Exemple 10 — Fonctions et suites a valeurs dans K

e Pour tout intervalle I non vide, ’ensemble K’ des fonctions de I dans K est un K-espace vectoriel pour I’addition
des fonctions et leur multiplication par un scalaire (il s’agit du théoréme précédent avec X = I et E = K).

e L’ensemble KN des suites & valeurs dans K est un K-espace vectoriel pour I’addition des suites et leur multiplication
par un scalaire (il s’agit du théoréme précédent avec X = N et E = K).

Exemple 11 L’exemple 7 est un aussi un cas particulier du théoréme précédent avec X = [1,n] x [1,p] et F =K.

Exemple 12 Tout C-espace vectoriel est aussi un R-espace vectoriel. En particulier, C est muni d’une structure de
R-espace vectoriel.

En effet, si E est un C-espace vectoriel, A - z est défini pour tous A € C et z € E, donc en particulier pour tout A € R, ce qui
justifie que I'on puisse considérer E comme un R-espace vectoriel, par restriction de ’ensemble des scalaires.
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Combinaisons linéaires

Définition 13 — Combinaisons linéaires d’un nombre fini de vecteurs

Soit F un K-espace vectoriel, A une partie de E et x1,...,x, des vecteurs de F, avec n € N*,
n
e On appelle combinaison linéaire des vecteurs x4, ..., T, tout vecteur de E de la forme Z AeTh, OU AL, ..., Ay €K
k=1

sont des scalaires, appelés les coefficients de la combinaison linéaire.

e On appelle combinaison linéaire d’éléments de A toute combinaison linéaire d’un nombre fini d’éléments de A.

Les espaces vectoriels sont congus pour pouvoir réaliser des combinaisons linéaires (mélanges
d’additions et de multiplications par des scalaires).

Cette notion se congoit géométriquement trés simplement dans le plan ou I'espace. Sur la figure
ci-contre, 4 est combinaison linéaire de i et j, mais ce n’est pas le cas de . Par contre, dans I’espace,
tout vecteur est combinaison linéaire de i, j et k.

¥ ArTENTION ! 8  Péché d’identification.

n n
En général : Z AeTr = Z IR >é> A = g, pour tout k € [1,n].
k=1 k=1

Par exemple :  (1,1) +2(0,1) +2(1,0) = (3,3) = 2(1,1) + (0,1) + (1,0).
Nous reviendrons sur cette question au paragraphe 3.2.

Exemple 14 Dans R?, (2,7) est combinaison linéaire des vecteurs (5, —2) et (1,-3) : (2,7) = (5, —2) — 3(1, —3).

1 9 _
Exemple 15 Dans .#5(R), ( ) O) n’est pas combinaison linéaire des vecteurs (é (1)>7 < 32 ;) et (_11 (1))

Exemple 16 Dans le R-espace vectoriel C, tout nombre complexe z est combinaison linéaire & coefficients réels des
complexes 1 et i, puisque z = Re(z) - 1 + Im(2) - .

Exemple 17 Soit n € N. Tout polynéme de K, [X] est combinaison linéaire des polynomes 1, X, X2 ..., X" puisque

n
I’on peut I’écrire 2 ap X* pour certains aq, ..., a, € K.
k=0

La notion suivante va nous permettre d’étendre la notion de combinaison linéaire & un nombre quelconque de
vecteurs.

—— Définition 18 — Famille presque nulle de scalaires

Soit I un ensemble. Une famille ();),. ; d’éléments de K indexée par I est dite presque nulle lorsque tous ses
éléments sont nuls sauf éventuellement un nombre fini d’entre eux, i.e. lorsque ’ensemble {i € I | A; # 0} est fini.
On note K T’ensemble des familles presque nulles d’éléments de K indexées par 1.

Dans le cas ou 'ensemble d’indices I est fini, la précision « presque nulle » devient sans intérét et on a K/ = K.

—— Définition 19 — Combinaison linéaire d’'un nombre quelconque de vecteurs

Soit E un K-espace vectoriel, I un ensemble quelconque et (z;),.; une famille de vecteurs de E.

On appelle combinaison linéaire de la famille (x;),.; tout vecteur de E de la forme 2/\1'%' ol (Aj);c; est une
iel

famille PRESQUE NULLE d’éléments de K.

Cette définition nous autorise donc & manipuler des combinaisons linéaires d’un nombre infini de vecteurs, en se
limitant toutefois & des sommes ne comportant qu'un nombre fini de termes non nuls. La notion de sommes infinies
n’a en effet aucun sens en ’absence d’une notion de limite adéquate a laquelle ’adosser.
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Exemple 20 K[X] est 'ensemble des combinaisons linéaires de la famille (X k) y €t la convention d’écriture des

ke
+o0
polynomes sous la forme Z ap X" désigne bien une somme ne comportant qu’un nombre fini de termes non nuls.
k=0

Sous-espaces vectoriels

Définition 21 — Sous-espace vectoriel
Soit E un K-espace vectoriel et F' une partie de £ STABLE PAR ADDITION ET PAR MULTIPLICATION PAR UN
SCALAIRE. On dit que F' est un sous-espace vectoriel de E lorsque F' est un K-espace vectoriel pour les lois
induites par celles de E.

Si F est sous-espace vectoriel de E, en particulier F' est un sous-groupe additif de E et on a donc O = 0 (théoréme
35 du chapitre 11).

Exemple 22 — Sous-espaces vectoriels triviaux Si E est un K-espace vectoriel, {Og} et F sont deux sous-espaces
vectoriels de E — parfois dits ¢riviauz. Notamment {Og} est un K-espace vectoriel — parfois dit trivial.

Exemple 23 La partie F = {(ac, y) € R? | 22 +r+y?= 0} n’est pas un sous-espace vectoriel de R2.

En effet, F n’est pas stable par multiplication par un scalaire, puisque (—1,0) € F tandis que (—2,0) = 2(—1,0) ¢ F. Ni par
addition d’ailleurs, puisque (—2,0) = (—1,0) + (—1,0).

—— Théoréme 24 — Caractérisation des sous-espaces vectoriels
Soit E un K-espace vectoriel et F' une partie de F. Les assertions suivantes sont équivalentes

(i) F est un sous-espace vectoriel de F;

(") ° OE eF )
e F' est stable par combinaison linéaire : VA, ueK, Vz,yeF, Ax+ uyeF.

Démonstration.

e (i) = (ii). Si F est un sous-espace vectoriel de E, on a rappelé que 0g = Or € F'. De plus, pour tous z,y € F et A\, u € K,
Az et py sont des éléments de F', partie stable de E par multiplication par un scalaire, et enfin Ax + py € F, car F est
stable par addition.

e (ii) = (i). Si 'assertion (ii) est vraie, F' est en particulier stable par addition (pour A = pu = 1) et multiplication par un

scalaire (pour y = Og). En outre, pour tout « € F, 'opposé —x de x dans E appartient aussi & F (pour A = —1l et y = 0g).
Les autres axiomes de la définition des espaces vectoriels ne requiérent aucune vérification particuliére puisqu’une relation
vraie sur E tout entier l’est aussi sur F. ™

Exemple 25 La partie F' = {(ac7 y) € R? ’ 20 — 3y = 0} est un sous-espace vectoriel de R2.

% En pratique &

e Pour établir qu'une partie d’un espace vectoriel en est un sous-espace vectoriel, on utilisera TOUJOURS la carac-
térisation précédente, qui évite de vérifier la ribambelle d’axiomes de la définition d’un espace vectoriel !

e Pour montrer qu’un ensemble muni d’une addition et d’une multiplication par un scalaire est un espace vecto-
riel, il suffit souvent de montrer qu’il se réalise comme le SOUS-espace d’un autre espace vectoriel connu. D’ou
Iimportance des espaces vectoriels classiques donnés en exemple précédemment (exemples et théorémes 4 a 10).

Exemple 26  Pour tout n € N*, I'’ensemble des matrices triangulaires supérieures (resp. inférieures) de taille n a
coefficients dans K est un sous-espace vectoriel de ., (K).
En effet, il s’agit bien d’un sous-ensemble de .#,(K) qui contient la matrice nulle et nous avons déja montré que toute

combinaison linéaire de matrices triangulaires supérieures (resp. inférieures) en est encore une (théoréme 49 du chapitre 12).

Exemple 27 — Espaces vectoriels K, [X]| Pour tout n € N, K,,[X] est un sous-espace vectoriel de K[X].

¥ ArTENTION ! ¥ L’ensemble des polyndmes de degré EGAL & n N’est PAS un sous-espace vectoriel de K[ X]. Il
ne contient méme pas le polynéme nul !
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Exemple 28 L’ensemble des fractions rationnelles de degré strictement négatif & coefficients dans K est un sous-espace
vectoriel de K(X).

Exemple 29

e Pour tout intervalle I non vide, les ensembles €*(I,K) et 2%(I,K), pour tout k € N, et ¥*(I,K) sont des
sous-espaces vectoriels du K-espace vectoriel K! des applications de I dans K.

e L’ensemble des suites & valeurs dans K convergentes est un sous-espace vectoriel du K-espace vectoriel K.

—— Théoréme 30 — Intersections de sous-espaces vectoriels
Toute intersection de sous-espaces vectoriels d’un K-espace vectoriel F est encore un sous-espace vectoriel de F.

Démonstration. ... [ |

¥ ArTENTION ! ¥ En revanche, la réunion de deux sous-espaces vectoriels
N’est PAS un sous-espace vectoriel en général (cf. exercice 7).
La stabilité par addition n’est clairement pas assurée!

Sous-espaces vectoriels engendrés par une partie

—— Définition-théoréme 31 — Sous-espaces vectoriels engendrés par une partie
Soit F un K-espace vectoriel et X une partie de E.
(i) L’intersection de tous les sous-espaces vectoriels de E contenant X est appelé le sous-espace vectoriel (de

E) engendré par X et est noté Vect(X). Il s’agit du plus petit sous-espace vectoriel de E contenant X,
i.e. Vect(X) contient X et tout sous-espace vectoriel de E qui contient X contient aussi Vect(X).

(ii) Si X = {x; | i € I}, alors Vect(X) est 'ensemble des combinaisons linéaires de la famille (z;),.; et est aussi
noté Vect(z;);es. Autrement dit

Vect(xi)iej = {Z )\ixi ()‘i)iel € K(I)}

iel

Démonstration. ... ™
" A ln) o v Vect(u,v

w Vect(u) v u Vect(u,v) (u,0)

% En pratique % Pour montrer qu’une partie d’'un espace vectoriel en est un sous-espace vectoriel, il suffit souvent

de I’écrire comme un Vect.

>
=

A

Exemple 32 Le sous-espace vectoriel Vect((1,2)) est la droite de R? passant par (0,0) et dirigée par (1,2).

Exercice 33  Plus généralement, si a est un vecteur non nul d’'un K-espace vectoriel E, le sous-espace vectoriel
engendré par a est {\a | A € K}. On le note aussi Ka et on Pappelle la droite vectorielle engendrée par a.

Exemple 34 Pour tout K-espace vectoriel E, Vect() = {0g}.

Exemple 35 K[X] = Vect(X*), _ et, pour tout n € N, K,[X] = Vect(1, X,..., X").

keN

Exemple 36 Le théoréme de décomposition en éléments simples des fractions rationnelles sur C énonce en particulier
(partie « existence » du théoréme) que

C(X) = Vect({X" |neN}u {

1
m GE(CetTLEN*}).
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Exemple 37 Le plan & de R? d’équation 2x — y + 32 = 0 passe par le point (0,0,0) et est dirigé par les vecteurs
(1,2,0) et (0,3,1). En résumé : & = Vect((1,2,0), (0, 3,1)).

Exemple 38 Le plan vectoriel & = Vect((1,2,3),(2,1,—1)) de R* admet pour équation cartésienne 5z — 7y + 3z = 0.
Exemple 39 Dans .#>(K), on a Z," (K) = Vect(({9),(34),(39)).

Exemple 40 Si le corps de base est R, Vectg(1) = {a x 1 |a € R} =R et Vectg(1l,i) ={ax1+bxi|a,beR} =C.
En revanche, si le corps de base est C, Vecte(l) ={ax1]|aecC}=C.

—— Théoréme 41 — Propriétés des Vect

Soit F un K-espace vectoriel, X et Y deux parties de FE et z,a,b€ E.
(i) Croissance pour I'inclusion. Si X c Y, alors Vect(X) < Vect(Y).
(ii) Oter un vecteur. Si z € X est combinaison linéaire de X\{z}, alors Vect(X) = Vect(X\{xz}).

(iii) Remplacer un vecteur. Si b est combinaison linéaire de X u {a} avec un coefficient NON NUL sur q,

alors
Vect(X v {a}) = Vect(X v {b}).

Démonstration. ... [ |

Exemple 42 Dans R3 :
Vect((1,1,0),(0,1,0),(1,3,0)) = Vect((1,1,0),(0,1,0)) = Vect((1,1,0) — (0,1,0), (0,1,0))...

Combinaison linéaire

de (1,1,0) et (0,1,0) ... = Vect((1,0,0), (0,1,0)) = R? x {0}.

Sous-espaces affines

Dans ’ensemble de cette section, F et F' désignent des K-espaces vectoriels.

2Bl Structure affine d’un espace vectoriel

Dans le plan R? ou l'espace R?, nous avons I’habitude d’identifier les points et les vecteurs via le choix d’un point
de référence ou origine O. Une telle origine étant fixée, toute relation OM = i nous autorise & confondre le point M
et le vecteur 4.

Considérer la structure affine d’un K-espace vectoriel E consiste a interpréter les éléments de F comme des points,
via le choix du vecteur nul comme origine O. Dans ce contexte, on note conventionnellement les points avec des
majuscules et les vecteurs avec des lettres minuscules, le plus souvent surmontées par une fleche. En outre, pour deux
points A et B de F, AB désigne le vecteur B — A. Avec ces conventions de notations, on a

A=B < EzOE, ﬂ:—@, B=A+i < i=AB

et on dispose de la relation de Chasles

VA,B,Ce E, AB+ BC = AC.

Définition 43 — Transaltion
Pour tout vecteur @ de E, on appelle translation de vecteur @ I'application de F dans E définie par

to: M — M + 4.

On vérifie sans difficulté qu'une composée de translations est une translation. Précisément, tz oty = tyoty = tgig.
On en déduit que la translation ¢z est une bijection de réciproque la translation ¢_gz, puisque to, = Idg.

® ArrenTIiON ! & Si @ # 0, tz nest pas une application linéaire, puisque t3(0g) = @ # Op.
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v Sous-espaces affines

Définition-théoréme 44 — Sous-espace affine, direction

Une partie .# du K-espace vectoriel E est appelée un sous-espace affine de E lorsqu’il existe un point Q de E et
un sous-espace vectoriel F' de E tels que

F=Q+F={Q+a|ieF).

Le cas échéant, le sous-espace vectoriel F' associé au sous-espace affine .# est unique. On Pappelle la direction de
F et ses éléments sont appelés les vecteurs directeurs de F.

Démonstration. Etablissons I'unicité de la direction d’un sous-espace affine .%. Soit F et F’ deux sous-espaces vectoriels de F
et x,7' € E tels que . = x + F = 2’ + F'. Par symétrie des rdles, il suffit de montrer I'inclusion F' < F’. Soit f € F, d’une part
x+fex+F=a +F' ainsi il existe f; € F' tel que z + f = 2’ + f1, d’autre part * = v + O € v + F, ainsi il existe f5 € F’

tel que = 2’ + f5, par conséquent f = f{ — fo € F'. [ |
Remarque 45 T
e Le sous-espace affine 2+ I' de F est I'image du sous-espace vectoriel F' par la S ) o e
~ ’

translation de vecteur OS).

e Conventionnellement, nous noterons les sous-espaces vectoriels avec des ma-
juscules droites (F, G, H, ...) et les sous-espaces affines avec des majuscules

rondes (¥, 9, A, ...).

Théoréme 46 — Caractérisation des sous-espaces affines par leur direction et un point

Soit .# un sous-espace affine du K-espace vectoriel E de direction F. Pour tout A € %, on a alors % = A+ F.
En particulier, deux sous-espaces affines sont égaux si et seulement s’ils ont la méme direction et un point en
commun.

Démonstration. ... ™

Exemple 47

e Tout sous-espace vectoriel F' de E en est un sous-espace affine et il est sa propre direction, dans la mesure ot
F = O + F. Réciproquement, si un sous-espace affine . de direction F' contient O, alors 'égalité % = O + F
prouve que % est égal & sa direction et est donc un sous-espace vectoriel.

En résumé, un sous-espace affine est un sous-espace vectoriel si et seulement s’il contient O, i.e. le vecteur nul Og.
e L’ensemble {(1 +¢,3 — 2t, —1 + 3t) | t € R} est un sous-espace affine de R? passant par le point (1,3, —1) et dirigé

par Vect((1,—2,3)).

En effet, {(1+¢,3—2t,—1+3t) | teR} = {(1,3,—-1) +t(1,—2,3) | t e R} = (1,3, —1) + Vect((1, -2, 3)).

e L’ensemble {P € R[X] | XP' + P = 2X} est un sous-espace affine de R[X] passant par le point X et dirigé par le
sous-espace vectoriel {P € R[X] | XP' + P = 0}.

—— Théoréme 48 — Intersection de sous-espaces affines
Soit (%#;),.; une famille de sous-espaces affines du K-espace vectoriel E. Pour tout ¢ € I, on note F; la direction
de .%;. Les sous-espaces affines .%;, ¢ décrivant I, sont dits concourants ou sécants lorsque ﬂ Fi # .

Le cas échéant, ﬂfl est un sous-espace affine de E de direction ﬂ F;. el
iel iel
Démonstration. ... [ |
¥ ArTENTION ! ¥ Tandis qu’une intersection de sous-espaces vectoriels contient toujours le vecteur nul et ne

saurait donc étre vide, une intersection de sous-espaces affines peut effectivement étre vide. Il suffit de considérez le
cas de deux droites paralléles non confondues dans le plan.
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Remarque 49 — Parallélisme (HP) La structure affine d’un espace vectoriel permet de définir la notion de parallélisme.
Précisément, pour deux sous-espaces affines . et ¢4 d’un K-espace vectoriel E dirigés respectivement par F et G,

o 7 est dit paraliéle 4 4 lorsque F < G;
o .7 et ¢ sont dits paralléles lorsque F = G.

Ainsi, dans l’espace usuel R une droite peut étre paralléle & un plan, deux plans peuvent étre paralléles, mais un plan
n’est jamais paralléle & une droite.

Familles de vecteurs

Dans I’ensemble de cette section, F et F' désignent des K-espaces vectoriels et n désigne un entier naturel. Par
convention, une liste (z;); <i<o d’¢léments de E correspond a la famille vide, i.e. 'ensemble vide.

Familles et parties génératrices

Définition 50 — Partie/famille génératrice

Soit X une partie du K-espace vectoriel E. On dit que la partie X est génératrice de FE ou engendre E lorsque
tout élément de E est combinaison linéaire d’éléments de X, i.e. E = Vect(X).
En particulier, si X = {z; | i € I}, on dit aussi que la famille (z;),., est génératrice de E ou engendre E.

Exemple 51 La famille (Xk)keN engendre K[X] et la famille (1, X,..., X™) engendre K, [X].

Exemple 52
e Pour tout (z,y) € K2, (z,y) = 2(1,0) + y(0,1), ainsi ((1,0), (0,1)) est une famille génératrice de K2.
e K3,

e De méme, pour tout (z,y, z) (z,y,2) = 2(1,0,0) + y(0,1,0) + 2(0,0, 1), donc ((1,0,0),(0,1,0), (0,0, 1))

engendre K3.

o Plus généralement, pour n € N* posons e; = (1,0,...
dit €; = (5i7j)1<j<

En effet, pour tout (x1,...,2,) € K, (21,...,2,) = z1€1

,0),e2 = (0,1,0,...,0),...,e, = (0,...,0,1), autrement
,,» pour tout i € [1,n]. La famille (e;)1<i<, est une famille génératrice de K.
+ ..

Lt xpen.

Exemple 53 La famille (G) 8), <8 (1)), ((1) 8), (8 (1))) engendre .#>(K), puisque, pour tout a,b, ¢, d € K,

()= 0) (o o) o< 8) oo )

Plus généralement, pour tout n,p € N*, ¢ € [1,n] et j € [1,p], notons E; ; la matrice élémentaire de .4, ,(K) dont
tous les coefficients sont nuls sauf celui en position (i,5), égal a 1. La famille (E; ;j)1<i<n est alors génératrice de

1<j<p
M, p(K), puisque, pour tout A € 4, ,(K), A = 2 a; jE; ; (corollaire 9 du chapitre 12).
1<ign
1<j<p

Exemple 54 La famille (1,¢) engendre le R-espace vectoriel C, mais (1) suffit & engendrer le C-espace vectoriel C.
Le théoréme qui suit n’est pour 'essentiel qu’'une simple reformulation du théoréme 41 de propriétés des Vect.

—— Théoréme 55 — Propriétés des parties génératrices

Soit X et Y deux parties du K-espace vectoriel E.
(i) Inclusion. Si X engendre E et si X < Y, alors Y engendre E.
(Toute « sur-famille » d’une famille génératrice est génératrice.)
(i) Oter un vecteur. Si X engendre E et si z € Vect(X\{z}), alors X\{x} engendre E.

(iii) Remplacer un vecteur. Si X u {a} engendre E et si b est combinaison linéaire de X u {a} avec un
coefficient NON NUL sur a, alors X u {b} engendre E.
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—— Corollaire 56
Soit X une partie génératrice de E. Une partie Y de E engendre FE si et seulement si tout vecteur de X est
combinaison linéaire de vecteurs de Y, i.e. X < Vect(Y).

Démonstration. Soit Y une partie de E.
e Supposons que X < Vect(Y). Alors E = Vect(Y), dans la mesure ou

E = Vect(X) < Vect(Vect(Y)) = Vect(Y) c E.

e Supposons que Y engendre E. Alors X ¢ E = Vect(Y). [ ]
% En pratique % Trouver une partie génératrice d’un sous-espace vectoriel revient a ’écrire comme un Vect.

Exemple 57 L’ensemble F = {(m,y, z,t) e R | r+2y—z=0etrz—y+t= 0} est un sous-espace vectoriel de R*
engendré par la famille ((1,0,1,—1),(0,1,2,1)).

Exemple 58 L’ensemble F' = {P € R3[X] | 2P(X + 1) = X P’} est un sous-espace vectoriel de R3[X] engendré par
X2 —4X +3.

¢4 Familles et parties libres ou liées

Définition 59 — Partie/famille libre d’'un nombre fini de vecteurs
Soit @1, ...,z des vecteurs du K-espace vectoriel E. La partie {x1,...,2,} ou la famille (z;),,,, est dite libre
ou les vecteurs x1,...,x, sont dits linéairement indépendants lorsque
n
V(Ai)1<i<n€Kn7 <Z)\le:OE e Alzz n = >
i=1

Quitte a remplacer \; par A; — y; dans la définition de la liberté, on peut aussi dire que (x;), <i<n ©st libre lorsque

v(/\i)lsisnv (/‘Li)lsiSn € Kn, (Z )\zxz = Z i EA Vie [[]. ,TLH, )\z = ﬂl>,
i=1 i=1

ce qui n’est rien d’autre qu’un PRINCIPE D’IDENTIFICATION. En résumé :

FAMILLE GENERATRICE = EXISTENCE pour TOUT vecteur d’une décomposition comme combinaison linéaire.

UNICITE des coefficients dans les combinaisons linéaires,

FAMILLE LIBRE — . .
ce qui autorise les IDENTIFICATIONS.

Définition 60 — Partie/famille liée d’'un nombre fini de vecteurs, couple de vecteurs colinéaires

e Soit z1,..., 7, des vecteurs du K-espace vectoriel £. La partie {z1,...,2,} ou la famille (z;), ., est dite lice
ou les vecteurs z1,...,x, sont dits linéairement dépendants lorsque la famille (z;), <i<n Nest PAS libre. Ceci
équivaut & ce qu’AU MOINS UN des vecteurs 1, ..., Z, soit combinaison linéaire des autres.

e Soit z,y deux vecteurs du K-espace vectoriel E. Les vecteurs = et y sont dits colinéaires lorsque la paire {x, y}
est liée, i.e. lorsque = ou y est un multiple de 'autre.

Dire que (), ;,, est liée revient & dire qu'il existe A, ..., \, € K tels que

(Z Nizi = 0p et Jige [1,n], A 7&0),

i=1
1 . . ..
auquel cas z;, = —~— 2 A%, t.e. T;, est « combinaison linéaire des autres x; ».
0 1<ign
i#io
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¥ ArTENTION ! ¥ L’assertion « 3A € K, z = Ay » ne suffit pas pour exprimer que deux vecteurs z et y sont
colinéaires. En effet, si = O0g et y # O, la famille (x,y) est liée, mais il n’existe aucun scalaire A tel que y = Ax.

Exemple 61 Soit n € N*. Posons e; = (1,0,...,0), e2 = (0,1,0,...,0), ..., e, = (0,...,0,1).
La famille (e;)1<i<n est libre dans K™ — principe d’IDENTIFICATION DES COEFFICIENTS D’UNE FAMILLE DE SCALAIRES.

En effet, pour tout (A1,...,\,) € K", Z Xiei = (A1,...,An), ainsi 1'égalité Z Xie; = (0,...,0) implique directement
i=1 i=1

Al=...=)X,=0.

Exemple 62 Soit n,p € N*. Notons, pour tout i € [1,n] et j € [1,p], E;; la matrice élémentaire de ., ,(R) dont

tous les coefficients sont nuls sauf celui en position (i, j), égal a 1. La famille (E; j)1<i<n est alors libre dans .4, ,(R)
1<j<p
— principe d’IDENTIFICATION DES COEFFICIENTS D’UNE MATRICE.

Exemple 63 La famille ((2,1),(—1,3),(0,2)) est lice dans R2.
Exemple 64 La famille (X2 - X+1,X°+X-2,X?-2X + 3) est libre dans R[X].
Exemple 65 La famille (sin, cos) est libre dans R¥.

Exemple 66 La famille (1,%) est libre dans le R-espace vectoriel C — principe d’IDENTIFICATION DES PARTIES REELLE
ET IMAGINAIRE — mais liée dans le C-espace vectoriel C.

En effet, la famille est liée sur C puisque i = i x 1.

Exemple 67 Toute partie/famille de vecteurs qui contient le vecteur nul est liée.

En effet, le vecteur nul est combinaison linéaire — & coefficients tous nuls - de n’importe quelle famille de vecteurs.

Exemple 68 — Famille formée d’un vecteur Toute partie {z}/famille (z) formée d’un seul vecteur est libre si et
seulement si 2 n’est pas le vecteur nul (conséquence directe du point (i) du théoréme 3).

Exemple 69 — Famille de polyndmes échelonnée en degré (a connaitre!)
Toute famille (Py,..., P,) de polynomes NON NULS de K[X] pour laquelle deg P, < ... < deg P, est libre. Une telle
famille est dite échelonnée en degré. Cet exemple est VITAL!

Exemple 70 — Famille échelonnée de vecteurs de K"

Soit (u1,...,up), avec p € N* une famille de vecteurs NON NULS de K™. Pour tout k € [1,p], notons i 'indice de
la premiére coordonnée non nulle de ug. La famille (u1,...,u,) est dite échelonnée lorsque la suite (i1,...,14,) est
strictement croissante. Le cas échéant, la famille (u1,...,u,) est libre.

La famille ((1,0,2,—1), (0,0, —4,2),(0,0,0,—5)) est une famille échelonnée de vecteurs de R* et est donc libre.

Définition 71 — Partie/famille libre/liée d’'un nombre quelconque de vecteurs

Soit (x;);.; une famille de vecteurs du K-espace vectoriel E.

e La famille (z;),.; ou la partie {z; | i € I} est dite libre lorsque
Y(Ai)ser € KO, (Z Nz =0 = Viel, \= 0).
iel

e La famille (x;),.; ou la partie {x; | i € I} est dite lice lorsque la famille (z;),.; N'est PAS libre. Ceci équivaut &
ce quU’AU MOINS UN des vecteurs x; soit combinaison linéaire des autres.

La quantification portant sur les familles presque nulles de scalaires (\;),.;, on est systématiquement ramené a des
combinaisons linéaires d’un nombre FINI de vecteurs. Ainsi la liberté d’une famille quelconque de vecteurs équivaut,
par définition, & la liberté de TOUTES ses sous-familles FINIES. En particulier, une famille (z,,) de vecteurs est libre
si et seulement si la famille (x;) est libre, pour tout n e N.

neN

0<isn
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Exemple 72 L’ensemble vide est une partie libre de tout K-espace vectoriel.

Exemple 73 (X™), .y est une famille libre de K[X'] - principe d'IDENTIFICATION DES COEFFICIENTS D’UN POLYNOME.

—— Théoréme 74 — Propriétés des parties libres/liées
Soit X et Y deux parties du K-espace vectoriel F, et y un vecteur de F.
(i) Inclusion. SiY est libre et si X < Y, alors X est libre.
Par contraposition, si X est liée et si X < Y, alors Y est liée.
(Toute « sous-famille » d’une famille libre est libre / Toute « sur-famille » d’une famille liée est liée.)

(ii) Ajout d’un vecteur. Si X est libre, alors X U {y} est libre si et seulement si y ¢ Vect(X).

Démonstration. ... [ |

On déduit en particulier du point (i) qu'une famille libre ne saurait contenir deux vecteurs colinéaires, et a fortiori
deux vecteurs égaux.

¥ ArTEnTION ! ¥ Une famille contenant deux vecteurs colinéaires est liée, mais une famille d’au moins trois
vecteurs peut étre liée sans contenir deux vecteurs colinéaires (cf. exemple 63).

Dire qu’une famille est libre revient a dire qu’aucun de ses vecteurs n’est combinaison linéaire des autres. Ainsi,
si I'on veut que I'ajout d’un vecteur conserve la liberté d’une famille libre, il est nécessaire de ne pas introduire de
dépendance entre ses vecteurs, autrement dit veiller & n’ajouter que des vecteurs linéairement indépendants de ceux
déja présents.

Bases

Définition 75 — Base, coordonnées

Soit & = (e;)ier une FAMILLE de vecteurs du K-espace vectoriel E.

e On dit que & est une base de E lorsque & est une famille libre et génératrice de E, i.e. si et seulement si tout
vecteur de F s’écrit d’une unique fagon comme une combinaison linéaire de vecteurs de .
o Le cas échéant, pour tout € FE, l'unique famille presque nulle de scalaires (z;)i; € K pour laquelle

T = inei est appelée la famille des coordonnées de x dans la base A.
iel

Les bases sont toujours des FAMILLES et non des ensembles. En effet, dans le plan muni d’une base, peut-on parler du
point de coordonnées {1,2} ? Clairement non, puisque le point de coordonnées (1,2) n’est pas le point de coordonnées
(2,1)! L’ordre des éléments a ici une importance cruciale.

Exemple 76 La famille (1,7) est une base du R-espace vectoriel C et les coordonnées d’un nombre complexe dans
cette base sont ses parties réelle et imaginaire.

Remarque 77 — Convention de la base vide Le K-espace vectoriel E trivial {0z} réduit au vecteur nul posséde
une unique base : 'ensemble vide (cf. exemples 34 et 72).

L’énoncé suivant est une synthése des exemples précédents (cf. exemples 51 & 53, 61, 62 et 73).

—— Définition-théoréme 78 — Bases canoniques de K", K[ X|, K, [X] et .Z, ,(K)
o Familles de scalaires. Pour tout n € N* on pose e; = (1,0,...,0), e2 = (0,1,0,...,0),..., e, = (0,...,0,1).
La famille (e;)1<i<n est une base de K™ — dite base canonique.
e Polyndmes. La famille (Xk)keN est une base de K[X] — dite base canonique — et, pour tout n € N, la famille
(X*)
0<k<n

e Matrices. Pour tout n,p € N*, on note, pour tout i € [1,n] et j € [1,p], E; ; la matrice de ., ,(K) dont
tous les coefficients sont nuls sauf celui en position (4, 5), égal a 1.

est une base de K,,[X] — aussi dite base canonique.

La famille (E; ;)1<i<n est une base de 4, ,(K) — dite base canonique.
IS Y
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Le qualificatif « canonique » doit étre compris au sens de « la plus naturelle ». On veillera a ne pas l'utiliser a tort
et & travers! De fait, les bases exhibées ci-dessus sont les plus naturelles, les plus faciles d’emploi auxquelles on peut
penser dans K", K[X], K,,[X] et ., ,(K).

e Pour tout (x1,...,x,) € K" les coordonnées de (z1,...,z,) dans la base canonique sont... ce vecteur lui-méme !
On peut difficilement faire plus simple.

+0o0

e Pour tout P = Z arX ke K[X], la famille des coordonnées de P dans la base canonique est la famille (aj)ren
k=0

de ses coefficients, i.e. P lui-méme si 'on veut bien se rappeler qu’'un polynéme est par définition une suite

presque nulle de scalaires.

e Pour tout A € 4, ,(K), la famille de coordonnées de A dans la base canonique est (a;;)1<i<n... i-e. A elle-méme.
1<j<p

Exemple 79 La famille ((1,1), (1,—2)) est une base de R2.
Exercice 80 La famille (X? + X, X? + 1, X + 1) est une base de Ro[X].

% En pratique & Pour déterminer une base d’un espace vectoriel, on en cherche initialement une famille génératrice
en écrivant celui-ci comme un Vect, puis on essaie d’établir que la famille obtenue est libre.

20 — y — 3z =0

Exemple 81 La famille ((2,1,1)) est une base du sous-espace vectoriel A de R? défini par { 35— 2y — 42

Il
e

Exercice 82 L’ensemble F des matrices M € .#5(R) telles que M " = M + tr(M)I est un sous-espace vectoriel de
AM>(R) de base ((§ %),(98)).

Exemple 83 — Base des polyndmes de Lagrange Soit g, ..., x, € K distincts et Ly, ..., L, les polynémes de

N

Lagrange associés a ces n + 1 points. La famille (Lo, ..., L,) est alors une base de K, [X] et les coordonnées d’un
polynéme P € K, [X] dans cette base sont (P(xg),. .., P(xy)).

En effet, le théoréme 48 du chapitre 17 établit que, pour tout P € K,[X] et yo,...,yn € K,
P= Z yili <= Vie[0,n], vyi=P(zi).
i=0
Exemple 84 — Interprétation de la formule de Taylor polynomiale Supposons que K est un sous-corps de C.

Pour tout o € K, la famille ((X — a)k)keN est une base de K[X] et les coordonnées d’un polynoéme P € K[X] dans

(k)
cette base sont (PT(Q)) .
: keN

1 Sommes de sous-espaces vectoriels

Dans I’ensemble de cette section, E désigne un K-espace vectoriel.

8B Définition

Nous avons vu a l'exercice 7 qu’une union de deux sous-espaces vectoriels F' et G de F n’est pas en général un
sous-espace vectoriel, ce qui nous améne a considérer le plus petit sous-espace vectoriel de E contenant F' et G.

Définition-théoréme 85 — Somme de deux sous-espaces vectoriels
Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E.

o L’ensemble FF+ G = {f +g| f € F et g€ G} est un sous-espace vectoriel de E, appelé la somme de F et G.

e La somme F' + G est aussi le plus petit sous-espace vectoriel de E contenant F' et G, ce qui signifie que tout
sous-espace vectoriel de E contenant F' et G contient également F' + G. Autrement dit, F' + G = Vect(F u G).
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Démonstration. Cf. exercice 7. [ ] G

¥ ArrenTion ! & 1l ne faut pas confondre SOMME et REUNION !
La somme est un sous-espace vectoriel, mais pas la réunion en général.

Exemple 86 E+E=FE, E+{0g}=F et {0p}+{0g}={0g}.

—— Théoréme 87 — Partie génératrice d’'une somme de deux sous-espaces vectoriels
Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E et X et Y deux parties de E. On a toujours

Vect(X UY) = Vect(X) + Vect(Y).

Autrement dit, si X et Y sont respectivement des parties génératrices de F' et G, alors X U Y est une partie
génératrice de F' + G.

Démonstration. ... [ |

¥ ArtENnTION ! ¥ Le théoréme précédent est faux si ’on remplace « partie génératrice » par « partie libre ».
Ainsi, si X et Y engendrent respectivement F' et G, X U'Y engendre F + G, mais si X et Y sont en outre libres (et
donc associées a des bases respectives de F' et G), on ne peut rien dire en général de la liberté de X u Y. En effet, les
vecteurs de F' n GG sont a la fois combinaisons linéaires de X et combinaisons linéaires de Y.

Exemple 88 Les droites vectorielles F' = Vect((1,0,0)) et G = Vect((0, 1,0)) de R? ont pour somme le plan d’équation
z=0.

Somme directe

Définition 89 — Somme directe de deux sous-espaces vectoriels

Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E. Les sous-espaces F et G sont dits en somme
directe lorsque la décomposition d’un vecteur de la somme F + G comme somme d’un vecteur de F' et d’un
vecteur de G est toujours unique, i.e.

Vi, f'eF, Vg,d€G, (f+g=f+g = [f=F[ et g=¢g).

On note alors F' @ G la somme F' + G pour indiquer que la somme est directe.

Il est important de saisir que, lorsque la somme est directe, les notations F' + G et F @ G désignent le MEME
ensemble de vecteurs, la seconde notation ayant ’avantage d’apporter une précision concernant une propriété de cette
somme.

—— Théoréme 90 — Caractérisation de la somme directe de deux sous-espaces vectoriels
Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E. Les assertions suivantes sont équivalentes

(i) F et G sont en somme directe.
(i) FnG={0g}.

(i) V(f,9) e F x G, (f+g9g=0p = [f=g=0g),
autrement dit la seule décomposition de Og dans F' + G est la décomposition triviale 0p = 0g + Og.

Démonstration. ... ™

Exemple 91 Dans K?, le plan F = {(z,y,2) € K3 | z+y+ 2z =0} et la droite G = {(z,y,2) € K3 | x =y =z} sont
en somme directe.
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Théoréme 92 — Bases de la somme directe de deux sous-espaces vectoriels

Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E. On suppose que F' et G possédent chacun une
base, notées respectivement % et €. Les sous-espaces F' et G sont en somme directe si et seulement si la famille
obtenue par concaténation des bases Z et € est une base de F' + G.

Le cas échéant, une telle base dont les premiers vecteurs forment une base de F' et les suivants une base de G est
dite adaptée a la somme directe F @ G.

Démonstration. ... [ |

Exemple 93 La famille ((—1,1,0),(—1,0,1),(1,1,1)) est une base adaptée a la somme directe F'@® G de I'exemple
91.

En particulier, en « coupant » une base £ en deux sous-familles (libres donc!) % et s, les sous-espaces engendrés
par %, et $, respectivement sont en somme directe. On en déduit le corollaire suivant.

—— Corollaire 94 — Obtention d’une somme directe a partir d’'une famille libre

Soit (2;),c; une famille libre de vecteurs du K-espace vectoriel E. Si (I1,I2) est une partition de I, alors les

sous-espaces vectoriels Vect(z;),.; et Vect(r;),.;, de E sont en somme directe.

Supplémentaires d’un sous-espace vectoriel

Définition-théoréme 95 — Sous-espaces vectoriels supplémentaires
Soit F' et G deux sous-espaces vectoriels du K-espace vectoriel E. Les assertions suivantes sont équivalentes

(i) Tout vecteur de E s’écrit de maniére unique comme la somme d’un élément de F et d’un élément de G
VeeE, 3M(f,g)eFxG, z=f+g.

(i) L’espace F est la somme directe de F et G, i.e. E = F®G.

Le cas échéant, les sous-espaces F' et G sont dits supplémentaires dans E. On dit aussi que F' est UN supplémentaire
de G dans E et que G est UN supplémentaire de F' dans E.

Ainsi deux sous-espaces vectoriels de FE sont supplémentaires si leur somme G
est la plus grande possible, i.e. E tout entier, et leur intersection la plus petite
possible, i.e. {0g}. Il est classique d’illustrer cette situation par des figures dans
R3 censées représenter schématiquement le cas général.

¥ ArTENTION ! ¥

e Il ne faut pas confondre les notions de « supplémentaire dans E » et de « somme directe ».

Dire que F et G sont en somme directe revient & affirmer que tout vecteur de E admet AU PLUS UNE décomposition
comme somme d’un vecteur de F' et d’'un vecteur de G. Pour étre précis, les vecteurs de F'+ G ont alors exactement
une décomposition de cette forme, tandis que ceux de E\(F + G) n’en ont pas.

Dire que F' et G sont supplémentaires dans E revient a affirmer en plus que £ = F + G et donc que tout vecteur
de E admet EXACTEMENT UNE décomposition comme somme d’un vecteur de F' et d’un vecteur de G.

e Un sous-espace vectoriel posséde-t-il toujours un supplémentaire 7 Oui, toutefois nous le démontrerons seulement
en dimension finie (cf. chapitre 23).

o Il est interdit de parler « du » supplémentaire d’un sous-espace vectoriel en général, faute d’unicité (cf. exemples
96 et 97 ci-dessous).

e Il ne faut pas non plus confondre la notion vectorielle de « supplémentaire » avec celle ensembliste de « complé-
mentaire ». D’une part, il y a absence d’unicité pour la supplémentarité, alors qu’il y a unicité du complémentaire.
D’autre part, un supplémentaire est un sous-espace vectoriel, tandis que le complémentaire d’un sous-espace vec-
toriel ne contient méme pas le vecteur nul.

Exemple 96 Deux droites NON CONFONDUES passant par (0,0) sont toujours supplémentaires dans R2.
Si P est un plan de R? passant par (0,0,0) et D une droite de R? passant par (0,0,0) NON CONTENUE DANS P, alors
P et D sont supplémentaires dans R3.
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Exemple 97 La droite G, = Vect((1, @, 1)) est un supplémentaire de F = {(:c,y,z) eR3 ’ r+y+z= 0} dans R3,
pour tout a # —2.

Exemple 98 Supposons 2 # 0 dans K. L’ensemble .7, (K) des matrices symétriques et I’ensemble 47, (K) des matrices
antisymétriques sont supplémentaires dans ., (K).

Exemple 99 Pour tout P € K[X] non nul de degré n > 1, K[X] = PK[X]|®K,,_1[X], ou PK[X] = {PQ | Q € K[X]}.
En effet, K,—1[X] et PK[X] sont des sous-espaces vectoriels de K[X] et on souhaite établir que

VAeK[X], 3(Q,R)eK[X]xK, 1[X], A=PQ+R,

ce qui correspond au théoréme de la division euclidienne dans K[X].

Exemple 100 L’existence et l'unicité de la partie entiére d’une fraction rationnelle prouve que K[X] et I’ensemble
des fractions rationnelles de degré strictement négatif sont deux sous-espaces vectoriels supplémentaires de K(X)
(théoréme 12 du chapitre 18).

Structure d’algébres (programme de MP)

Nous savons maintenant que deux structures algébriques cohabitent sur les ensembles K[X], ., (K) et K! (avec
I un intervalle de R) : une structure d’anneau et une structure de K-espace vectoriel.

Remarquons alors que cette cohabitation ne se fait pas de fagon totalement indépendante pour la loi de multipli-
cation interne liée & la structure d’anneau et celle de multiplication externe liée a la structure de K-espace vectoriel.
Par exemple, pour tout A € K,

VP,QeK[X], (AP)Q = P(\Q) = A(PQ) et VYA Be.#,(K), (AM)B=AN\B)=\AB).

La définition suivante propose de formaliser ces observations.

—— Définition 101 — Algébre sur un corps
On appelle K-algébre (ou algébre sur K) tout quadruplet (E, +, x, -) vérifiant
(i) (E,+,-) est un K-espace vectoriel ;
(ii) (E,+, x) est un anneau;
(iii) V eK, Vz,yeE, (Az)xy=2zx (Ay)= Az xy).

On qualifie de commutative toute algébre dont ’anneau sous-jacent est commutatif.

Exemple 102
e Pour tout corps (K, +, x), le quadruplet (K, +, x, x) est une K-algebre.
e Le corps C est a la fois muni d’une structure de C-algébre et de R-algébre.

Plus généralement, si K est un corps et I un sous-corps de K, alors K est muni d’une structure de K-algébre et
aussi de L-algébre.

e Les quadruplets (K[X], +, x, ) et (#,(K), +, x,+), avec n € N* sont des K-algébres.
e Si E est une K-algébre et X un ensemble non vide, alors EX est naturellement muni d’une structure de K-algébre

(cf. théoréme 9 ci-dessus et théoréme 57 du chapitre 11). En particulier, 'ensemble KX des fonctions définies
sur X et & valeurs dans le corps K est muni d’une structure de K-algébre.

—— Définition 103 — Morphisme d’algéebres
On appelle morphisme d’algébres toute application entre deux K-algébres qui est simultanément une application
linéaire et un morphisme d’anneaux.

On définit aussi de fagon classique les notions d’endomorphismes, d’isomorphismes et d’automorphismes d’algébres.

Exemple 104
e La conjugaison est un automorphisme de la R-algébre C (mais pas pour la structure de C-algébre!).

e Soit R € K[X]. L application de composition a droite P — P o R est un endomorphisme de la K-algébre K[X].
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Exemple 105 — Evaluation polynomiale en un élément d’une K-algébre
e Soit a € K. L’application d’évaluation P — P(«) est un morphisme (surjectif) d’algébres de K[X] sur K.

Soit M € #,,(K), avec n € N*. L’application d’évaluation P — P(M) est un morphisme d’algébres de K[X]
dans ., (K).

Plus généralement, si E est une K-algébre et z un élément de E, alors 'application d’évaluation P — P(z) est
un morphisme d’algébres de K[X] dans E.

En particulier, pour @Q € K[X], application d’évaluation P —> P(Q) est un endomorphisme de la K-algébre
K[X]. Cela légitime la notation P(Q) de la composition P o Q) (cf. définition 21 du chapitre 14).

Définition 106 — Sous-algébre
Soit (E,+, x, ) une K-algebre. On appelle sous-algébre de E toute partie de E stable pour les lois +, x et -, et
qui est une K-algébre pour les lois induites par celles de F.

Comme toujours, on préférera en pratique la caractérisation suivante pour établir qu’une partie est une sous-algébre.

—— Théoréme 107 — Caractérisation des sous-algébres

Soit E une K-algébre. Une partie F' de E est une sous-algébre de E si et seulement si elle vérifie les deux assertions
suivantes

(i) F est un sous-anneau de E'; (ii) F est stable pour la loi externe « - ».

Exemple 108 Soit n un entier naturel non nul.
e [’ensemble R est une sous-algébre de la R-algébre C.
e Plus généralement, .#,(R) est une sous-algébre de la R-algébre ., (C).
e Les ensembles de matrices 7,7 (K), 7~ (K), Z,(K) et K- I,, sont des sous-algébres de .#,,(K).

e Soit I un intervalle de R. Les ensembles ¢'(I,K), €*(I,K), ¢ (I,K) et 2*(I,K) sont des sous-algébres de K.

¥ ArrenTioN ! ¥ Pour tout n € N*, K, [X] n’est pas une sous-algebre de K[X], dans la mesure oi ce sous-
ensemble n’est pas stable par produit.

Compétences a acquérir

e Montrer qu’un ensemble est muni d’une structure de (sous-)espace vectoriel : exercices 5 a 7.
e Déterminer si un vecteur est combinaison linéaire d’une famille de vecteurs : exercices 3 et 4.
e Manipulation des Vect : exercices 8 & 11.

e Montrer qu’une famille de vecteurs est génératrice : exercices 14 et 22.

e Montrer qu’une famille de vecteurs est libre/liée : exercices 15 a 25.

e Montrer qu'une famille de vecteurs est une base : exercices 26 a 28.

e Déterminer une base d’un espace vectoriel : exercices 29 a 30.

e Déterminer les coordonnées d’un vecteur dans une base : exercices 26 et 27.

e Montrer que deux sous-espaces sont en somme directe : exercice 32.

e Montrer que deux sous-espaces sont supplémentaires : exercices 32 & 39.

Quelques résultats classiques :
e Famille de polynomes échelonnée en degré (exemple 69).
e Famille échelonnée de vecteurs de K™ (exemple 70).
e Base des polynomes de Lagrange (exemple 83).
o Interprétation de la formule de Taylor polynomiale (exemple 84).
e Supplémentarité de .7, (K) et 27%,(K) dans .#,(K) (exemple 98).
e Unions, intersections et sommes de sous-espaces vectoriels(exercice 7).
e Familles libres de fonctions (exercice 24).
e Supplémentarité des sous-espaces de fonctions paires et impaires (exemple 35).
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