
20 Convexité

Dans ce chapitre, la lettre I désigne un intervalle de R non réduit à un point.

1 Définitions

Pour tous x, y P R avec x ď y, rx , ys “ tp1 ´ λqx ` λy | λ P r0 , 1su.
Lemme 1 – Paramétrage d’un segment

Démonstration. Si x ă y, alors f : λ ÞÝÑ p1 ´ λqx ` λy est une bijection (croissante) de r0 , 1s sur rx , ys. ■

x

fpxq

y

fpyq

p1 ´ λqx ` λy

p1 ´ λqfpxq`λfpyq

fpp1 ´ λqx`λyq

Cordes et sécantes du graphe d’une fonction Soit f : I ÝÑ R et x, y P I.
Quand λ parcourt le segment r0 , 1s, p1 ´ λqfpxq ` λfpyq décrit le segment
rfpxq , fpyqs et, dans le plan, le point de coordonnées

pp1 ´ λqx ` λy, p1 ´ λqfpxq ` λfpyqq

décrit le segment d’extrémités px, fpxqq et py, fpyqq, appelé une corde du
graphe de f . Par ailleurs, si x ‰ y, la droite passant par les points px, fpxqq

et py, fpyqq est appelée une sécante du graphe de f .

Soit f : I ÝÑ R une fonction.
• La fonction f est dite convexe sur I lorsque

@x, y P I, @λ P r0 , 1s, fpp1 ´ λqx ` λyq ď p1 ´ λqfpxq ` λfpyq.

• La fonction f est dite concave sur I lorsque son opposé ´f est convexe, i.e.

@x, y P I, @λ P r0 , 1s, fpp1 ´ λqx ` λyq ě p1 ´ λqfpxq ` λfpyq.

Définition 2 – Convexité/concavité

Interprétation graphique Soit Γ le graphe de la fonction f dans le plan.
La fonction f est convexe sur I si et seulement si, pour tous points A et
B de Γ d’abscisses respectives x et y, la courbe de f est en dessous de la
corde rA ,Bs.

En effet, pour tout a appartenant au segment rx , ys, i.e. de la forme
p1´λqx`λy avec λ P r0 , 1s, les points P et M d’abscisses a et se trouvant
respectivement sur Γ et sur la corde rA ,Bs, admettent respectivement
fpp1 ´ λqx ` λyq et p1 ´ λqfpxq ` λfpyq pour ordonnées. O

A

B
M

P

x ya

Γ

Soit f : I ÝÑ R une fonction convexe et x, y P I avec x ă y.
Le graphe de f est situé au-dessous de sa sécante sur rx , ys et au-dessus de sa sécante à l’extérieur de rx , ys.

Théorème 3 – Position du graphe d’une fonction convexe par rapport à ses sécantes

Démonstration. ... ■

Exemple 4
• Toute fonction affine est à la fois convexe et concave.
• La fonction valeur absolue est convexe. En effet, pour tous λ P r0 , 1s et px, yq P R2, on a

|p1 ´ λqx ` λy| ď |p1 ´ λqx| ` |λy| “ p1 ´ λq|x| ` λ|y|.

• Une somme de fonctions convexes (resp. concaves) est une fonction convexe (resp. concave).
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2 Convexité

Le théorème suivant indique que l’inégalité qui définit la convexité d’une fonction se généralise à n points.

Soit n P N˚. Si f est une fonction convexe sur I et pλiq1ďiďn une famille de réels positifs telle que
n

ÿ

i“1

λi “ 1,

alors
@px1, . . . , xnq P In, f

˜

n
ÿ

i“1

λixi

¸

ď

n
ÿ

i“1

λifpxiq.

On dispose naturellement de cette inégalité dans l’autre sens lorsque f est concave.

Théorème 5 – Inégalité de Jensen†

Démonstration. ... ■

Remarque 6 Si f est convexe sur I et si λ1, . . . , λn sont des réels positifs non tous nuls, alors

@px1, . . . , xnq P In, f

ˆ

λ1x1 ` . . . ` λnxn

λ1 ` . . . ` λn

˙

ď
λ1fpx1q ` . . . ` λnfpxnq

λ1 ` . . . ` λn

et, en particulier, f

˜

1

n

n
ÿ

k“1

xi

¸

ď
1

n

n
ÿ

i“1

fpxiq.

2 Caractérisation de la convexité par la croissance des pentes
Le théorème suivant se résume en un dessin ! Il exprime une caractérisation de la convexité par la « croissance des

pentes ».

Soit f : I ÝÑ R une fonction.

(i) Caractérisation de la convexité par les pentes des sécantes.
La fonction f est convexe sur I si et seulement si, pour tout a P I, la

fonction φa : x ÞÝÑ
fpxq ´ fpaq

x ´ a
est croissante sur Iztau.

(ii) Inégalité des pentes. Si f est convexe sur I, alors

@x, y, z P I, x ă y ă z ùñ
fpyq ´ fpxq

y ´ x
ď

fpzq ´ fpxq

z ´ x
ď

fpzq ´ fpyq

z ´ y
.

y “ fpxq

x y z

Théorème 7 – Caractérisation de la convexité en termes de pente, inégalité des pentes

Démonstration. ... ■

Attention ! Dans la caractérisation précédente, on exige la croissance de φa sur Iztau, et pas seulement
sur chacun des deux intervalles I X s´8 , ar et I X sa ,`8r.

Soit f : I ÝÑ R une fonction. Si I est un intervalle ouvert et si f est convexe sur I, alors
(i) f est dérivable à gauche et à droite (et donc continue) sur I avec f 1

g ď f 1
d.

(ii) Les fonctions f 1
g et f 1

d sont croissantes sur I.

Théorème 8 – Régularité des fonctions convexes (HP)

Démonstration. ... ■

Attention ! Dans le théorème précédent, il est essentiel que l’intervalle I soit ouvert.
En effet la fonction « smiley » ci-contre est convexe, mais n’est pas continue aux bornes du domaine
de définition.

†. Johan Ludwig William Valdemar Jensen (1859 à Nakskov – 1925 à Copenhague) est un mathématicien autoditacte et ingénieur
danois, essentiellement connu pour l’inégalité de Jensen.
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Convexité 3

3 Caractérisation de la convexité pour les fonctions dérivables
Pour une fonction suffisamment régulière, il existe un lien entre sa convexité et la monotonie de sa dérivée (resp.

le signe de sa dérivée seconde).

Soit f : I ÝÑ R une fonction dérivable sur I. Les assertions suivantes sont équivalentes :
(i) La fonction f est convexe sur I ;
(ii) La fonction f 1 est croissante sur I (ou f2 ě 0 sur I si f est deux fois dérivable sur I) ;
(iii) Le graphe de f est situé au-dessus de chacune de ses tangentes, i.e.

@x, a P I, fpxq ě fpaq ` f 1paqpx ´ aq.

Théorème 9 – Caractérisation des fonctions convexes dérivables

Démonstration. ... ■

Exemple 10
• La fonction inverse est concave sur s´8 , 0r et convexe sur s0 ,`8r.
• La fonction exponentielle est convexe sur R et la fonction logarithme est concave

sur R˚
`. En particulier,

@x, y P R, epx`yq{2 ď
ex ` ey

2
et @x, y P R˚

`, ln

ˆ

x ` y

2

˙

ě
lnx ` ln y

2
.

Exemple 11 La fonction f définie sur R par fpxq “ x5´5x4 est concave sur l’intervalle
s´8 , 3s et convexe sur l’intervalle r3 ,`8r.

x

y

O

y “
1

x

En effet, puisque f est polynomiale, elle est deux fois dérivable sur R et l’on
peut donc étudier sa convexité via le signe de sa dérivée seconde. Or, pour
tout x P R,

f 1
pxq “ 5x4

´ 5 ˆ 4x3
“ 5

`

x4
´ 4x3

˘

,

f2
pxq “ 5

`

4x3
´ 4 ˆ 3x2

˘

“ 20x2
px ´ 3q.

f2 est donc du signe de x´3 et la conclusion découle du tableau de convexité
ci-contre.

x ´8 0 3 `8

f2 ´ 0 ´ 0 `

f concave concave convexe

Exemple 12 – Inégalités classiques de convexité

1. @x P R, ex ě x ` 1. 2. @x P s´1 ,`8r, lnp1 ` xq ď x. 3. @x P

”

0 ,
π

2

ı

,
2

π
x ď sinx ď x.

y “ ex

y “ x ` 1
y “ lnpx ` 1q

y “ x

y “ sinx

y “ x
y “

2

π
x

π

2

Exemple 13 – Inégalité arithmético-géométrique Pour tous réels x1, . . . , xn strictement positifs,

˜

n
ź

i“1

xi

¸1{n

ď
1

n

n
ÿ

i“1

xi,

ce qui exprime que la moyenne géométrique est inférieure à la moyenne arithmétique.
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4 Convexité

Soit a un point intérieur de I et f : I ÝÑ R une fonction continue en a.
On dit que la fonction f admet un point d’inflexion en a lorsque f subit un chan-
gement de convexité en a, i.e. f est convexe au voisinage à gauche de a et concave
au voisinage à droite de a, ou vice-verca.

Définition 14 – Point d’inflexion

En un tel point, la tangente – si elle existe – traverse la courbe. Pour cette raison, la
détermination des points d’inflexion aide à bien représenter l’allure de la courbe d’une
fonction.

x

y Cf

A

Soit a un point intérieur à I et f : I ÝÑ R une fonction.
(i) Si f est dérivable sur I, alors f admet un point d’inflexion en a si et seulement si la courbe de f traverse

sa tangente en ce point.
(ii) Si f est deux fois dérivable sur I, alors f admet un point d’inflexion en a si et seulement si f2 s’annule en

a en changeant de signe.

Théorème 15

Démonstration. Conséquence du théorème 9. ■

Exemple 16 La courbe représentative de la fonction cube définie sur R par fpxq “ x3

admet l’origine Op0, 0q du repère comme point d’inflexion.
En effet, f est polynomiale donc deux fois dérivable sur R et, pour tout x P R,

f 1pxq “ 3x2 et f2pxq “ 6x.

Ainsi f2 s’annule en changeant de signe en 0.

x

y

O

y “ x3

La courbe traverse
sa tangente en O.

Exemple 17 La courbe de la fonction de l’exemple 11 admet un unique point d’inflexion, à savoir le point A de
coordonnées p3, fp3qq “ p3,´162q.

x

y

O

Cf

A

3

´162

La courbe traverse sa tangente en A.
A est un point d’inflexion.

La courbe ne traverse pas sa tangente en O.
O n’est pas un point d’inflexion.

Compétences à acquérir

• Établir qu’une fonction est convexe/concave : exercices 1 à 3 et 14.
• Obtention d’inégalités par convexité : exercices 4 à 8.
• Obtenir des propriétés pour une fonction par convexité : exercices 9 et 10.

Quelques résultats classiques :
• Inégalités classiques de convexité (exemple 12).
• Inégalité arithmético-géométrique (exemple 13).
• Extrema d’une fonction convexe (exercice 9).
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