19 | Deérivabilité

Dans ce chapitre, les lettres D et E désignent des parties quelconques de R, et K désigne 'un des corps R ou C.
Dé&finitions et premiéres propriétés

18 Dérivabilité

Définition 1 — Dérivabilité en un point/sur une partie de R, nombre dérivé, dérivée

Soit f : D — C une fonction.

z)— f(a
e Soit a € D. La fonction f est dite dérivable en a lorsque la limite lim M EXISTE ET EST FINIE.
z—a T —a
d
Le cas échéant, cette limite est appelé le nombre dérivé de f en a et est notée f’'(a) ou d—f(a).
x
e La fonction f est dite dérivable sur D lorsque f est dérivable en tout point de D. Le cas échéant, la fonction

df

x —> f'(x) est appelée la dérivée de f et notée f’' ou 1
x

On note Z(D,K) I'ensemble des fonctions dérivables sur D & valeurs dans K.

Yy Yy
F() b ,,,,,,,,,,,,,,,,,,M x tend vers a
i La corde reliant
J10) ) E— | (a, f(a)) et (z, f(2)) J10)) E— \La tangente de f en a
a T a x

Interprétation graphique du nombre dérivé. On reprend les notations de la définition 1, on note Cy la courbe de f
et A et M les points de Cy d’abscisses respectives a et . Le taux d’accroissement de f entre a et x est alors la pente
de la droite (AM). Si f est dérivable en a, lorsque x tend vers a, le point M tend vers le point A en se déplagant sur
la courbe Cy et la droite (AM) tend vers une droite limite tangente a la courbe.

Définition 2 — Tangente a la courbe
Soit f : D — R une fonction et a € D.
o Si f est dérivable en a, la tangente & la courbe de f en a est la droite d’équation y = f'(a)(z — a) + f(a).

o Si fim @) /@

r—a Tr—a

= to0, la droite d’équation x = a est appelée la tangente (verticale) & la courbe de f en a.

Au voisinage de a, la tangente en a ressemble beaucoup & la courbe de f, on dit que la tangente est une approzimation
affine de la courbe de f au voisinage du point d’abscisse a. Cette idée sera formalisée au chapitre 24. Dans 'immeédiat
précisons 'information apportée par cette approximation affine.

Supposons f dérivable en a et définie au voisinage & gauche et & droite de a et considérons deux réels a et
vérifiant o < f’(a) < 3, alors

a < lim M < 6 Y cone contenant ‘ .
T—a xr—a l/ i ' ‘ d ) y =Bz —a)+ f(a)
et il existe donc un réel n > 0 (théoréme 14 du chapitre 16) tel que @ corbe de ]
fla) |-z ‘ y=a(r—a)+ f(a)
Vz € la—n,a+ n[\{a}, a<W<B i
soit i
Vezela,a+n[, alr—a)+ fla) < f(z)<pB(x—a)+ f(a) !
Vzela—mn,a], B(z—a)+ fla) < f(z)<alz—a)+ fla). a r

Exemple 3 Si f est définie sur [0, 1] et dérivable en 0 avec f(0) = 0 et f'(0) > 0, alors f est strictement positive au
voisinage a droite de 0.
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Exemple 4 Pour tout n € N, la fonction puissance x — 2™ est dérivable sur R de dérivée 2 — na” 1.

n n n—1 n—1
. " —a ke ke _
En effet, soit a € R, pour tout z € R\{a}, = Z D I Z aba" P = pa™
r—a rz—a
k=0 k=0

Remarque 5 Via le changement de variable h = x — a, la dérivabilité de f en a équivaut a l’existence d’une limite
fla+h)—f(a)

finie en 0 du taux d’accroissement 0

Y=z

Exemple 6 La fonction racine carrée x — 1/ n’est pas dérivable en 0 et sa courbe
admet une demi-tangente verticale en 0.

En effet, pour tout ~ > 0, le taux d’accroissement entre 0 et 0 + h est

VO+h=+0 _vh _ 1

h ho e |
y = |z] Exemple 7 La fonction valeur absolue n’est pas dérivable en 0.
En effet, pour tout = € R¥, = = [0] = ! st = 0 ainsi
z—0 -1 siz <O,
P el U Y et im 21O
z—0t = —0 z—0- = —0
[
—— Théoréme 8 — Lien entre dérivabilité et continuité
Soit f: D —> Cet ae D. Si f est dérivable en a, alors f est continue en a.
A y @ - ot
Démonstration. Puisque f est dérivable en a, f(z) = x (x —a) + f(a) — f(a), par opérations. [ |
r—a r—a
¥ ArTENTION ! ¥ La réciproque du résultat précédent est évidemment fausse! Comme I'indiquent les fonctions

racine carrée et valeur absolue qui sont continues mais non dérivables en 0 (cf. exemples 6 et 7).

Le théoréme suivant est une simple déclinaison d’un résultat analogue obtenu pour les limites (théoréme 55 du
chapitre 16).

—— Théoréme 9 — Caractérisation de la dérivabilité via les parties réelle et imaginaire

Soit f : D —> C une fonction et a € D. La fonction f est dérivable en a si et seulement si Re(f) et Im(f) le sont.
En outre, le cas échant, f'(a) = Re(f) (a) + ¢ Im(f)’(a).

Dérivabilité a gauche/a droite

Définition 10 — Dérivabilité a gauche/a droite

Soit f : D — C une fonction et a € D. On suppose f définie au voisinage de a & gauche et a droite.

. . . . xr)— Jjla .
o [ est dite dérivable a gauche en a lorsque f|p~]—op ] est dérivable en a, i.e. lorsque lim M existe
z—a~ Tr—a
et est finie. Le cas échéant, cette limite est appelée le nombre dérivé a gauche de f en a et est notée f;(a).
L N . : o flx) = fla) .
o [ est dite dérivable a droite en a lorsque f|pnpa,+c0f st dérivable en a, i.e. lorsque hm+ ————— existe
r—a r—a

et est finie. Le cas échéant, cette limite est appelée le nombre dérivé a droite de f en a et est notée f)j(a).

Puisqu’elle n’est qu’un cas particulier de la dérivabilité en général, la dérivabilité & gauche (resp. a droite) implique
la continuité & gauche (resp. a droite). En particulier, si une fonction admet en a une dérivée & gauche et une dérivée
a droite, alors elle est continue en a.

t. Pire, il existe des fonctions continues sur R mais dérivables nulle part! A I'instar des fonctions de Weierstrass (1872)

+o0
T — Z a”cos(b"mx), avecO<a<1l et ab>1.
n=0 +o
) A } s(2nz) .
Un autre exemple est donnée par la fonction de Takagi : x —> Z CTI ou s(z) = Iéll%llx — k.
€

n=0
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Il existe bien str un lien entre dérivabilité en a et dérivabilité & gauche et a droite en a, comme le précise la
proposition suivante, qui résulte naturellement du lien entre limite en a et limite a gauche et & droite en a pour une
fonction non définie en a.

—— Théoréme 11 — Caractérisation de la dérivabilité via les dérivabilités a gauche et a droite
Soit f : D — C une fonction et a € D. On suppose f définie au voisinage de a & gauche et a droite.

La fonction f est dérivable en a si et seulement si elle est dérivable a gauche et a droite en a ET si fy(a) = fj(a).

y=f(z)

Ci-contre f est dérivable a gauche et & droite en a - sa courbe admet
ainsi des demi-tangentes a gauche et & droite en a - mais pas en a,

car f;(a) # fi(a).

]
I
I
i
I
I
!
a x

Exemple 12 La fonction valeur absolue |-| est dérivable a gauche et a droite en 0, mais n’est pas dérivable en 0,
puisque ||;(O) =—1#1=1],(0) (cf. exemple 7).

e 1/z

. . B siz>0 -
Exemple 13 La fonction f: { 0 sz <0 est dérivable en 0. /—_
En effet, f,(0) = f4(0) =0, ainsi f est dérivable en 0 et f'(0) = 0. < >

i8¢}  Deérivabilité par opérations

—— Théoréme 14 — Opérations sur la dérivabilité
Soit f,g: D — C deux fonctions et @ € D. On suppose f et g dérivables en a.
(i) Combinaison linéaire. Pour tous A, u € C, A\f + ug est dérivable en a et (A\f + pug)'(a) = Af'(a) + ng'(a).
(Linéarité de la dérivation).
(ii) Produit. Le produit fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).

/ /
(iii) Quotient. Si g(a) # 0, alors le quotient S est dérivable en a et <f> (a) = F(@)g(
g g

Soit f: D —> Ret g : E —> C deux fonctions telles que f[D] < E et a € D.

(iv) Composition. Si f est dérivable en a et g est dérivable en f(a), alors g o f est dérivable en a et
(9o f)(a) = f'(a) g(f(a)).

Ces assertions restent valables en remplacant « dérivable en a » par « dérivable sur D ».

Démonstration. ... ™

—— Corollaire 15
Les fonctions polynomiales sont dérivables sur R et les fonctions rationnelles sont dérivables sur leurs ensembles
de définition respectifs.

Exemple 16 La fonction  — vz3 sinx est dérivable sur |—m, 7[.
Exemple 17 La fonction z — In (x +4/x(1— x)) est définie sur |0, 1] et dérivable sur |0, 1].

Remarque 18 La régle de dérivation pour une composée de fonctions est primordiale, dans la mesure ou elle est a la
base de la dérivation des composées du type +/u, e¥, Inu, u®, ... oll u est une fonction.
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Théoréme 19 — Dérivabilité d’une réciproque
Soit I un intervalle et f € 2(I,R) bijective de I sur l'intervalle J = f[I].

1
Si f/ NE S’ANNULE PAS SUR I, alors f~! est dérivable sur J et (f~1) = o
Démonstration. Cf. annexe A. [ |
¥ ATrTENTION ! ¥ =2
L’hypothése selon laquelle f’ ne s’annule
pas est essentielle!
y = f(z)

Tangente VERTICALE,
ainsi f~! n’est pas dérivable

Tangente HORIZONTALE,
f' s’annule.

Remarque 20 La formule ( f *1), = peut étre retrouvée rapidement en dérivant la relation fo f~1 =Idy :

o
JrofT
1= (IdJ)/ _ (fof_l)/ _ (f_l)l % flof_l-

Dérivées successives

—— Définition 21 — Dérivées successives et fonctions de classe ¢*
Soit f : D — C une fonction. On définit les dérivées successives de f sur D par récurrence :

fO = f et pourtout keN,si f¥) est définie et dérivable sur I, alors f*+1) — (f(k))l.

Soit k € N.
7 o . d* f
e Lorsquelle est définie, la fonction f*), aussi notée —2- Fp , est appelée fonction dérivée k¢ (ou d’ordre k) de f

sur D et la fonction f est dite k fois demvable sur D.
On note 2*(D,K) 'ensemble des fonctions k fois dérivables sur D a valeurs dans K.

e La fonction f est dite de classe €% sur D lorsque f est k fois dérivable sur D et lorsque sa dérivée k° f(*) est
continue sur D. On note €*(D,K) I’ensemble des fonctions de classe €% sur D & valeurs dans K.
En particulier, °(D,K) est 'ensemble des fonctions continues sur D & valeurs dans K.

e La fonction f est dite de classe €* sur D lorsque f est dérivable autant de fois que 'on veut sur D.
L’ensemble des fonctions de classe € sur D a valeurs dans K est noté €*(D,K). On a donc

¢*(D,K) = [ ¢*(D.K) = | 2*(D.K).

k=0 k=1

¥ ArTENTION ! ¥ Etre de classe €', ce n'est pas étre « dérivable et continue » — on est toujours continue
lorsque 'on est dérivable — mais étre « dérivable de dérivée continue ».

Le lien entre continuité et dérivabilité donne lieu aux implications/inclusions suivantes :

‘ ) Lipschitizienne
Classe ¢ = Classe ¢* Classe 2* Classe ¢* 1= I
&
Dérivable Continuité
%[Clasqe ]=)[ deux fois HCla@se HDGI 1dele]=)[ Classe S”O]

En outre, si f € €%(I,K) avec k > 1, alors f' € €% 1(I,K) et F e €**!(I,K), out F désigne une primitive de f sur I.

Exemple 22
o exp € €*(R,R) et, pour tout k € N, exp®) = exp.

e Les fonctions usuelles du chapitre 5 sont de classe € sur leurs domaines de dérivabilité respectifs.
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A T'instar des fonctions dérivables, on dispose de régles opératoires pour la dérivabilité (ou la classe) a 'ordre k.

—— Théoréme 23 — Opérations sur les dérivées successives

Soit k € N.
(i) Combinaison linéaire, produit, quotient. Pour toutes fonctions f,g € €*(D,C) et \,u € C, on a
M +pge€*(D,C), fge €*(D,C) et, si g ne s’annule pas sur D, g € €*(D,C). Par ailleurs,
k
k
AN+ pg)®) = AfF) 4 pg®) et (fg)*) = Z (p) @ gk=P) (formule de Leibniz?).
p=0

(ii) Composition.  Si f e €%(D,R), ge €*(E,C) et si f[D] < E, alors go f € €%(D,C).}
(iii) Réciproque. Soit I un intervalle. Pour toute fonction f € €% (I, R) bijective de I sur I'intervalle J = f[I],
SI f' NE $’ANNULE PAS SUR I, alors f~! € €%(J,R).

On peut remplacer dans chacune de ces assertions « €% » par « 2% » ou « €% ».

Démonstration. Cf. annexe A. ]

Exemple 24

e Les fonctions polynomiales sont de classe €* sur R. En outre, si f est une fonction polynomiale de degré n € N,
alors, pour tout k > n, f*) = 0.

o Les fonctions rationnelles sont de classe €® sur leurs ensembles de définition respectifs.

% En pratique Pour montrer qu’une fonction est deux fois dérivable, on cherchera en priorité a appliquer le
théoréme précédent. On ne s’amuse pas & montrer qu’elle est dérivable, a la dériver, puis & montrer que sa dérivée est
a nouveau dérivable!

1
Exemple 25 Soit o € C. La fonction z — est de classe €% sur R\{—a} et admet x —
x

dérivée n°, pour tout n € N.

2

Exemple 26 La fonction f : z —— z*e” est de classe €% sur R et, pour tout n € N,

g (z° + 2nz + n(n — 1)) e*.

Informations déduites de la dérivée d’une fonction

¥ ATrTENTION ! ¥ A Pexception notable du théoréme 36, les résultats des paragraphes 2.1 & 2.3 ne concernent
que les fonctions & valeurs REELLES.

»J8 Extrema locaux d’'une fonction dérivable

Définition 27 — Extremum local et point critique
Soit f : D — R une fonction et a € D.

e On dit que f admet un mazimum (resp. minimum) local en a lorsque f est majorée (resp. minorée) par f(a)
au voisinage de a.

e On dit que a est un point critique de f lorsque f est dérivable en a avec f'(a) = 0.

Maximum, donc R y Maximum local

maximum local .
mais pas global

Remarque 28 Un maximum local n’est pas nécessairement un /\
maximum de la fonction sur tout son domaine de définition.

Minimum, donc z

minimum local
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¥ ArTENTION ! % Une fonction peut admettre un extremum local en un point sans étre monotone & gauche et
monotone a droite au voisinage de ce point (cf. exercice 1).

—— Théoréme 29 — Condition nécessaire pour un extremum local en un point intérieur

Soit I un intervalle, f : I — R une fonction et a un point INTERIEUR de I. Si f est dérivable en a et posséde
un extremum local en a, alors a est un point critique de f.

Démonstration. ... [ |
| |
| | |
| | |
| | |
| | |
| | |
i i i
Il Il Il
a l a [ a
Situation standard du théoréme Il est crucial de ne pas se Réciproque fausse : tout point
(cas d’'un maximum local). situer en une extrémité de I. critique n’est pas un extremum local.
¥ ArTENTION ! ¥ La condition précédente n’est pas suffisante, comme le suggére la derniére figure ci-dessus et

I'exemple de la fonction cube 2 — 23 sur R, dont la dérivée s’annule en 0 mais qui n’admet pas d’extremum local en

ce point. Pour une condition suffisante, on se reportera au théoréme 39.

Le théoréme de Rolle et le théoréme des accroissements finis

—— Théoréme 30 — Théoréme de Rolle®
Si f:[a,b] — R est une fonction continue sur [a, b], dérivable sur ]a,b[ et telle que f(a) = f(b), alors il existe
un réel ¢ € |a, b[ tel que f'(¢) = 0.

Démonstration. ... [ |

Remarque 31

e Le théoréme de Rolle est un théoréme d’existence, pas d’unicité. Graphiquement, il
affirme que la courbe représentative de f posséde au moins une tangente horizontale.

e En cinématique, le théoréme de Rolle implique qu’un point mobile sur un axe qui
revient & son point de départ a vu sa vitesse s’annuler & un instant donné. |

Ql-———-
[ T,

Exemple 32  Soit f € €3([a,b],R) telle que f(a) = f'(a) = f(b) = f/(b) = 0. Alors il existe un réel c € ]a, b tel que
78(c) = 0.

¥ ArTENTION ! 8 Le théoréme de Rolle est faux pour les fonctions & valeurs complexes.
Un contre-exemple est fourni par la fonction ¢ — e : cette fonction est dérivable sur [0,27] et vérifie i = e2™ = 1,
mais sa dérivée t — i e’ ne s’annule pas sur [0, 27].

t. Gottfried Wilhelm Leibniz (1646 & Leipzig — 1716 Hanovre) est un philosophe, scientifique, mathématicien, logicien, diplomate, juriste,
bibliothécaire et philologue allemand. On lui attribue généralement, avec Isaac Newton, 'invention du calcul infinitésimal.
1. La formule de Faa di Bruno (mathématicien italien (1825 — 1888)) généralise la régle de dérivation des fonctions composées au cas

k! k @\™
des dérivées d’ordre supérieur : (go f)*) = Z R S H L x glmitedmi) o ¢
milmal---my! - 7!
('rn,l,...,'mk)eNlC j=1

Imy+2mao+...+kmp=k
§. Michel Rolle (1652 & Ambert — 1719 & Paris) est un mathématicien francais connu pour avoir établi, dans le cas particulier des

fonctions polynomiales réelles, le théoréme qui porte aujourd’hui son nom.

R. Basson — Lycée Fénelon Sainte-Marie — MPSI Année 2025-2026


https://www.fenelonsaintemarie.org

Dérivabilité

Une généralisation majeure du théoréme de Rolle est ’égalité des accroissements finis.

—— Théoréme 33 — Théoréme des accroissements finis
Si f:[a,b] — R est continue sur [a,b] et dérivable sur ]a,b[, alors il existe un réel ¢ € Ja, b[ tel que

1y £0) = fla)
f (C) - b —a :
S S - X . oy dO) = f@)
Démonstration. 11 suffit d’appliquer le théoréme de Rolle & la fonction z — f(z) — f(a) b a (z —a). [ |

L’interprétation de I’égalité des accroissements finis est la suivante :

SI J’AI DES INFORMATIONS SUR f’, JJEN Al AUSSI SUR f.

Typiquement, toute majoration/minoration de f’ peut étre convertie en une majoration/minoration liée a f.

1
Exemple 34 Pour tout x > 0, ) <hn(zx+1)—Inzx <
x

z
Remarque 35

e Graphiquement, la formule des accroissements finis affirme qu’il existe au moins une
tangente & la courbe représentative de f qui soit paralléle a la droite passant par
les points de coordonnées (a, f(a)) et (b, f(b)).

e En cinématique, la formule des accroissements finis implique que si une voiture
réalise un parcours a la vitesse moyenne de 90 km/h, alors il existe un instant du
trajet en lequel sa vitesse instantanée aura été de 90 km/h.

Ql--——-
[ )

Constance, monotonie et dérivabilité

—— Théoréme 36 — Caractérisation des fonctions constantes dérivables
Soit I un INTERVALLE et f € 2(I,C), f est constante sur I si et seulement si f’ est nulle sur I.

Démonstration. ... [ ]

—— Théoréme 37 — Caractérisation des fonctions monotones dérivables
Soit I un INTERVALLE et f € 2(I,R).

(i) La fonction f est croissante sur I si et seulement si f” est positive sur I.

(ii) La fonction f est strictement croissante sur I si et seulement si f’ est positive sur I et n’est identiquement
nulle sur aucun intervalle [a,b] avec a < b.

En particulier, si f’ est strictement positive sur I, alors f est strictement croissante sur I.

Des résultats similaires valent pour la décroissance.

Démonstration. ... [ |
¥ ArTENTION ! ¥ Dans les deux théorémes précédents, 'hypothése selon laquelle I est un INTERVALLE est
cruciale. Ces théorémes sont faux dés que I est une réunion d’intervalles disjoints.
Y : Y .
y = f(x) y = f(x)
f. eSF Cf)nstante sur Iy et I, e * f est croissante sur I et I,
ainsi f’ = Osur I; U I, . .
. , ainsi f’ = 0 sur I; U I3, mais f
mais f n’est pas constante —e , .
n’est pas croissante sur I; U I5.
sur I; U Ip. r 1 r 1 r 1r 1
| L 4 L 4 T | L 4 L 4 T
]1 IQ ]1 12

Par ailleurs, on peut avoir f’(a) > 0 en un point a sans que la fonction f soit strictement croissante au voisinage de a
(cf. exercice 1).
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‘ Pour prévenir d’éventuels drames, on se limitera essentiellement a parler de monotonie sur des INTERVALLES de R.

Exemple 38 La fonction définie sur R par f(z) = x — sinz est strictement
croissante sur R.

En effet, par somme, f est dérivable sur R et, pour x € R, f'(x) = 1 —cosz. Ainsi f' >0
sur R et f’ s’annule sur I’ensemble {2k~ | k € Z}, qui ne contient aucun intervalle de la
forme [a,b] avec a < b.

Terminons ce paragraphe avec une condition suffisante en lien avec la dérivée pour l'existence d’un extremum.

—— Théoréme 39 — Condition suffisante pour un extremum local en un point intérieur

Soit I un intervalle, f : I — R une fonction dérivable sur I et a un point intérieur de I. Si f’ s’annule en a en
changeant de signe, alors f admet un extremum local en a.

Démonstration. Quite a changer f en —f, il existe un voisinage Ja —n,a + n[ de a dans I, avec n > 0, tel que f < 0 sur
la—mn,a] et f/ = 0sur [a,a+n[. Alors f est décroissante sur |a —n,al, ainsi f > f(a) sur Ja —n,a], et f est croissante sur
[a,a+n[, ainsi f = f(a) sur [a,a + n[. Finalement f admet un minimum local en a. [ |

Exemple 40 La fonction f définie sur R par f(z) = 23 — 3z admet des extrema locaux en —1 et 1.

228 Inégalité des accroissements finis et fonctions lipschitziennes

—— Théoréme 41 — Inégalité des accroissements finis

Soit I un intervalle et f € 2(I,C). S’il existe un réel positif &k tel que |f’'(z)| < k, pour tout = € I, alors f est
k-lipschitzienne sur 1.

Démonstration. ... ™

Exemple 42
e Les fonctions sinus et cosinus sont 1-lipschitzienne sur R, leurs dérivées respectives étant bornées par 1.
En particulier,
VreR, |[sinz| <]zl

e Si fe % ([a,b],C), alors f est lipschitzienne de rapport r[nz?](|f’| sur [a,b].

En effet, f’ est continue sur le segment [a,b], par hypothése, et y est donc bornée en atteignant ses bornes, d’aprés le
théoréme des bornes atteintes.

Remarque 43

e Rappelons qu’une fonction peut-étre lipschitzienne et non dérivable (par exemple z — |z|).

e En revanche, si f est une fonction dérivable et k-lipschitzienne sur I'intervalle I,
alors, pour tout x € I, on a

f@) = f(=)

vt e I\{z}, ’ —

et il vient, par passage a la limite selon t — z, |f'(x)| < k. Ainsi |f’| est majorée
par k sur I.

e Graphiquement, si f est dérivable sur I et de dérivée f’ bornée par k, alors,
pour tout abscisse a € I, la courbe de f se situe entre les droites d’équations

y = fla) £k(z—a)
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Dérivabilite B

Une condition suffisante de dérivabilité en un point

Commengons par rappeler que les limites

z)— fla
lim f@) = fla) et lim f/(x)
T—a xr—a r—a
sont conceptuellement trés différentes. La premiére est liée & la dérivabilité de la fonction f en a, tandis que la seconde
est liée & la continuité de la dérivée f/ en a. Dans I’énoncé suivant, la notation %11)1}1 f'(x) désigne la limite en a de la
restriction de [’ a I'\{a}. r#a

—— Théoréme 44 — Théoréme de la limite de la dérivée

Soit I un intervalle, a € I, £ € R et f : I —> R. Si la fonction f est continue sur I, dérivable sur I\{a} et si
lim f'(z) = ¢, alors
r#a

S~ f(@)

Tr—a Tr—a

= /.

En particulier, si £ € R, alors f est dérivable en a (donc sur I) et f’ est continue en a.

Démonstration. ... [ |

¥ ArTENTION ! ¥ Le théoréme précédent énonce seulement une condition suffisante pour établir ’existence du
nombre dérivé en a. Il se peut que f/(a) existe sans que f’|1\{a} ait une limite en a (cf. question 2 de l’exercice 1).

Exemple 45 La fonction  — Arcsin(1 — 2*) est de classe ¢! sur [-1,1].

Compétences a acquérir

e Etudier et exploiter la dérivabilité d’une fonction : exercices 2 & 4.
Calculer des dérivées successives : exercices 8 et 10 & 12.
Utiliser le théoréme de Rolle : exercices 15 a 17, 21 et 27 & 30.

e Utiliser les accroissements finis : exercices 13 et 14, 23 & 25.

e Utiliser le théoréme de la limite de la dérivée : exercices 38 a 39.

Quelques résultats classiques :
e Extension du théoréme de Rolle (exercice 20).
e Théoréme de Darboux (exercice 26).

e Point fixe répulsif pour une suite récurrente u,41 = f(u,) (exercice 34).

R. Basson — Lycée Fénelon Sainte-Marie — MPSI Année 2025-2026


https://www.fenelonsaintemarie.org

Dérivabilité

Démonstrations

Preuve du théoreme 19. Soit b e J.

e Puisque f est dérivable en £7'(b), lim

f@) — F(f )

/ —1 a1 /
= b)) et, par passage a I'inverse ne s’annulant pas
L Py =7 F'(f71 (b)) et, par passag (f P

par hypothése),

T i (O N
et F@) = U0~ FUT®)

e En outre, puisque f est continue et bijective, f~! est continue en b, soit lirré fﬁl(y) = fﬁl(b). On a alors,
y—

S y) = f7H0) 1

= lim =

v=b f(f71 W) = F(F7H0) (D)

par composition des limites.

Preuve du théoréme 23. Les théorémes opératoires 14 et 19 se généralisent aux fonctions de classe €, via les régles
opératoires sur la continuité. On raisonne alors par récurrence sur k € N, l’initialisation étant claire dans chaque cas.

(i)

(ii)

(iii)

P(k): <Y\ peR, Yf,geC*(D,R), Af+pugeC"(D,R) et (Af + ug)® = Af® 4 pug® ».

Héreédité. On suppose le résultat vrai au rang k. Soit f,g € €**1(D,R), alors f, g € €*(D,R), donc Af +ug € €*(D,R) et
pour tous A, w € R, (Af + pug) = Af' +ug’. Or f', g € €*(D,R) ainsi, par hypothése de récurrence, (A f + pg)’ € €*(D,R),
i.e. \f 4+ pg € €"71(D,R). En outre,

OF + 1) D = (A + 1)) = (AFD 4+ ™) = /\(f(k))/ + u(g(k))/ = A 4 g,

k
P(k): «Vf,ge €*(D,R), fge?*(D,R) et (fg)* =>] (i) F@ gl
p=0
Heérédité. On suppose le résultat vrai au rang k. Soit f,g € €**1(D,R), alors f,g € €*(D,R), donc fg € €*(D,R) et

(f9)' = f'g+ fg'. Or f'g, fg' € €*(D,R), par hypothése de récurrence, ainsi (fg) € €*(D,R), par combinaison linéaire,
i.e. fge € (D, R). En outre,

(F) = ((19)™) = (i (Z)f(k)g(n_k)) _ i <k> (r9gY = ZZ: ( )(( 9) g0 4 1) (g<n—k>>’)

k=0

n n+1 n
_ n (k+1) (n—k) | (k) (n7k+1)) _ n 3) (n—j+1) k) (n—k+1)
=B 2 E (e ()
= j=1 k=0
n n+t
_ lnt1) (0) n (k) (n—k+1) (©) gnt1) _ n+1) (& gD
et B ()« () e =5 (1)

Formule de Pascal

Pk): «Vf,ge G (D,R), (VweD, g(z)+0) —s g e €*(D,R) »

Hérédité. On suppose le résultat vrai au rang k. Soit f,g € €¥*1(D,R), g ne s’annulant pas sur D, alors f,g € €*(D,R),
/ /o /

donc 5 e €'(D,R) avec (g) = M Or f'g — fg', 9% € €%(D,R), par produit et combinaison linéaire, ainsi

g
!/
(g) € €*(D,R), par hypothése de récurrence, i.e. g e ¢***(D,R).
P(k): «VfeC"(D,R), Vge€"(E,R), f[DJ]cE = gofe%*(D,R)»

Heérédité. On suppose le résultat vrai au rang k. Soit f € € (D,R) et g € €*T(E,R) telles que f[D] c E, alors
fe € (D,R) et ge € (E,R), donc go f € €*(D,R) et (go f) = f x g of. Or f € €"(D,R), et ¢’ o f € €"(E,R) par
hypothése de récurrence, ainsi (go f) € €*(D,R), par produit, i.e. go f € €**1(D,R), par produit.

P(k) : « Pour tout f € €%(I,R), si f est bijective de I sur J = f[I] et si f’ ne s’annule pas sur I, alorsf~* € €*(J,R) ».

Hérédité. On suppose le résultat vrai au rang k. Soit f € €%+ (I, R), bijective de I sur J = f[I] et telle que f’ ne s’annule
’ 1

pas sur I. Alors f € 4" (I,R), donc f~' e €' (J,R) et (f') = o Or f~' € €*(J,R), par hypothése de récurrence,

ainsi (ffl)/ € €%(J,R), par composition et quotient, i.e. f~' € €T (J,R).
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