
19 Dérivabilité

Dans ce chapitre, les lettres D et E désignent des parties quelconques de R, et K désigne l’un des corps R ou C.

1 Définitions et premières propriétés

1.1 Dérivabilité

Soit f : D ÝÑ C une fonction.
• Soit a P D. La fonction f est dite dérivable en a lorsque la limite lim

xÑa

fpxq ´ fpaq

x ´ a
existe et est finie.

Le cas échéant, cette limite est appelé le nombre dérivé de f en a et est notée f 1paq ou
df

dx
paq.

• La fonction f est dite dérivable sur D lorsque f est dérivable en tout point de D. Le cas échéant, la fonction

x ÞÝÑ f 1pxq est appelée la dérivée de f et notée f 1 ou
df

dx
.

On note DpD,Kq l’ensemble des fonctions dérivables sur D à valeurs dans K.

Définition 1 – Dérivabilité en un point/sur une partie de R, nombre dérivé, dérivée

x

y
y “ fpxq

fpaq

a

fpxq

x

A

M

La corde reliant
pa, fpaqq et px, fpxqq

x tend vers a

x

y
y “ fpxq

fpaq

a

La tangente de f en a

Interprétation graphique du nombre dérivé. On reprend les notations de la définition 1, on note Cf la courbe de f
et A et M les points de Cf d’abscisses respectives a et x. Le taux d’accroissement de f entre a et x est alors la pente
de la droite pAMq. Si f est dérivable en a, lorsque x tend vers a, le point M tend vers le point A en se déplaçant sur
la courbe Cf et la droite pAMq tend vers une droite limite tangente à la courbe.

Soit f : D ÝÑ R une fonction et a P D.
• Si f est dérivable en a, la tangente à la courbe de f en a est la droite d’équation y “ f 1paqpx ´ aq ` fpaq.

• Si lim
xÑa

fpxq ´ fpaq

x ´ a
“ ˘8, la droite d’équation x “ a est appelée la tangente (verticale) à la courbe de f en a.

Définition 2 – Tangente à la courbe

Au voisinage de a, la tangente en a ressemble beaucoup à la courbe de f , on dit que la tangente est une approximation
affine de la courbe de f au voisinage du point d’abscisse a. Cette idée sera formalisée au chapitre 24. Dans l’immédiat
précisons l’information apportée par cette approximation affine.

Supposons f dérivable en a et définie au voisinage à gauche et à droite de a et considérons deux réels α et β
vérifiant α ă f 1paq ă β, alors

α ă lim
xÑa

fpxq ´ fpaq

x ´ a
ă β

et il existe donc un réel η ą 0 (théorème 14 du chapitre 16) tel que

@x P sa ´ η , a ` ηrztau, α ă
fpxq ´ fpaq

x ´ a
ă β

soit
"

@x P sa , a ` ηr, αpx ´ aq ` fpaq ă fpxq ă βpx ´ aq ` fpaq

@x P sa ´ η , ar, βpx ´ aq ` fpaq ă fpxq ă αpx ´ aq ` fpaq. x

y

fpaq

a

cône contenant
la courbe de f

y “ βpx ´ aq ` fpaq

y “ αpx ´ aq ` fpaq

Exemple 3 Si f est définie sur r0 , 1s et dérivable en 0 avec fp0q “ 0 et f 1p0q ą 0, alors f est strictement positive au
voisinage à droite de 0.
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2 Dérivabilité

Exemple 4 Pour tout n P N, la fonction puissance x ÞÝÑ xn est dérivable sur R de dérivée x ÞÝÑ nxn´1.

En effet, soit a P R, pour tout x P Rztau,
xn

´ an

x ´ a
“

n´1
ÿ

k“0

akxn´k´1
ÝÑ
xÑa

n´1
ÿ

k“0

akan´k´1
“ nan´1.

Remarque 5 Via le changement de variable h “ x ´ a, la dérivabilité de f en a équivaut à l’existence d’une limite

finie en 0 du taux d’accroissement
fpa ` hq ´ fpaq

h
.

Exemple 6 La fonction racine carrée x ÞÝÑ
?
x n’est pas dérivable en 0 et sa courbe

admet une demi-tangente verticale en 0.
En effet, pour tout h ą 0, le taux d’accroissement entre 0 et 0 ` h est

?
0 ` h ´

?
0

h
“

?
h

h
“

1
?
h

ÝÑ
hÑ0

`8.

y “
?
x

y “ |x| Exemple 7 La fonction valeur absolue n’est pas dérivable en 0.

En effet, pour tout x P R˚,
|x| ´ |0|
x ´ 0

“

"

1 si x ą 0
´1 si x ă 0,

ainsi

lim
xÑ0`

|x| ´ |0|
x ´ 0

“ 1 et lim
xÑ0´

|x| ´ |0|
x ´ 0

“ ´1.

Soit f : D ÝÑ C et a P D. Si f est dérivable en a, alors f est continue en a.
Théorème 8 – Lien entre dérivabilité et continuité

Démonstration. Puisque f est dérivable en a, fpxq “
fpxq ´ fpaq

x ´ a
ˆ px ´ aq ` fpaq ÝÑ

xÑa
fpaq, par opérations. ■

Attention ! La réciproque du résultat précédent est évidemment fausse ! Comme l’indiquent les fonctions
racine carrée et valeur absolue qui sont continues mais non dérivables en 0 (cf. exemples 6 et 7).†

Le théorème suivant est une simple déclinaison d’un résultat analogue obtenu pour les limites (théorème 55 du
chapitre 16).

Soit f : D ÝÑ C une fonction et a P D. La fonction f est dérivable en a si et seulement si Repfq et Impfq le sont.
En outre, le cas échant, f 1paq “ Repfq1paq ` i Impfq1paq.

Théorème 9 – Caractérisation de la dérivabilité via les parties réelle et imaginaire

1.2 Dérivabilité à gauche/à droite

Soit f : D ÝÑ C une fonction et a P D. On suppose f définie au voisinage de a à gauche et à droite.

• f est dite dérivable à gauche en a lorsque f |DXs´8,as est dérivable en a, i.e. lorsque lim
xÑa´

fpxq ´ fpaq

x ´ a
existe

et est finie. Le cas échéant, cette limite est appelée le nombre dérivé à gauche de f en a et est notée f 1
gpaq.

• f est dite dérivable à droite en a lorsque f |DXra,`8r est dérivable en a, i.e. lorsque lim
xÑa`

fpxq ´ fpaq

x ´ a
existe

et est finie. Le cas échéant, cette limite est appelée le nombre dérivé à droite de f en a et est notée f 1
dpaq.

Définition 10 – Dérivabilité à gauche/à droite

Puisqu’elle n’est qu’un cas particulier de la dérivabilité en général, la dérivabilité à gauche (resp. à droite) implique
la continuité à gauche (resp. à droite). En particulier, si une fonction admet en a une dérivée à gauche et une dérivée
à droite, alors elle est continue en a.

†. Pire, il existe des fonctions continues sur R mais dérivables nulle part ! À l’instar des fonctions de Weierstrass (1872)

x ÞÝÑ

`8
ÿ

n“0

an cospbnπxq, avec 0 ă a ă 1 et ab ě 1.

Un autre exemple est donnée par la fonction de Takagi : x ÞÝÑ

`8
ÿ

n“0

sp2nxq

2n
, où spxq “ min

kPZ
|x ´ k|.
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Dérivabilité 3

Il existe bien sûr un lien entre dérivabilité en a et dérivabilité à gauche et à droite en a, comme le précise la
proposition suivante, qui résulte naturellement du lien entre limite en a et limite à gauche et à droite en a pour une
fonction non définie en a.

Soit f : D ÝÑ C une fonction et a P D. On suppose f définie au voisinage de a à gauche et à droite.
La fonction f est dérivable en a si et seulement si elle est dérivable à gauche et à droite en a et si f 1

gpaq “ f 1
dpaq.

Théorème 11 – Caractérisation de la dérivabilité via les dérivabilités à gauche et à droite

x

y

a

fpaq

y “ fpxq

Ci-contre f est dérivable à gauche et à droite en a - sa courbe admet
ainsi des demi-tangentes à gauche et à droite en a - mais pas en a,
car f 1

gpaq ‰ f 1
dpaq.

Exemple 12 La fonction valeur absolue |¨| est dérivable à gauche et à droite en 0, mais n’est pas dérivable en 0,
puisque |¨|1gp0q “ ´1 ‰ 1 “ |¨|1dp0q (cf. exemple 7).

Exemple 13 La fonction f : x ÞÝÑ

"

e´1{x si x ą 0
0 si x ď 0

est dérivable en 0.

En effet, f 1
gp0q “ f 1

dp0q “ 0, ainsi f est dérivable en 0 et f 1
p0q “ 0.

x

y

1.3 Dérivabilité par opérations

Soit f, g : D ÝÑ C deux fonctions et a P D. On suppose f et g dérivables en a.
(i) Combinaison linéaire. Pour tous λ, µ P C, λf ` µg est dérivable en a et pλf ` µgq1paq “ λf 1paq ` µg1paq.

(Linéarité de la dérivation).
(ii) Produit. Le produit fg est dérivable en a et pfgq1paq “ f 1paqgpaq ` fpaqg1paq.

(iii) Quotient. Si gpaq ‰ 0, alors le quotient
f

g
est dérivable en a et

ˆ

f

g

˙1

paq “
f 1paqgpaq ´ fpaqg1paq

gpaq2
.

Soit f : D ÝÑ R et g : E ÝÑ C deux fonctions telles que f rDs Ă E et a P D.
(iv) Composition. Si f est dérivable en a et g est dérivable en fpaq, alors g ˝ f est dérivable en a et

pg ˝ fq
1
paq “ f 1paq g1pfpaqq.

Ces assertions restent valables en remplaçant « dérivable en a » par « dérivable sur D ».

Théorème 14 – Opérations sur la dérivabilité

Démonstration. ... ■

Les fonctions polynomiales sont dérivables sur R et les fonctions rationnelles sont dérivables sur leurs ensembles
de définition respectifs.

Corollaire 15

Exemple 16 La fonction x ÞÝÑ
?
x3 sinx est dérivable sur s´π , πr.

Exemple 17 La fonction x ÞÝÑ ln
´

x `
a

xp1 ´ xq

¯

est définie sur s0 , 1s et dérivable sur s0 , 1r.

Remarque 18 La règle de dérivation pour une composée de fonctions est primordiale, dans la mesure où elle est à la
base de la dérivation des composées du type

?
u, eu, lnu, uα, ... où u est une fonction.
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4 Dérivabilité

Soit I un intervalle et f P DpI,Rq bijective de I sur l’intervalle J “ f rIs.

Si f 1 ne s’annule pas sur I, alors f´1 est dérivable sur J et
`

f´1
˘1

“
1

f 1 ˝ f´1
.

Théorème 19 – Dérivabilité d’une réciproque

Démonstration. Cf. annexe A. ■

Attention !

L’hypothèse selon laquelle f 1 ne s’annule
pas est essentielle !

y “ fpxq

y “ f´1pxq

y “ x

Tangente horizontale,
f 1 s’annule.

Tangente verticale,
ainsi f´1 n’est pas dérivable

Remarque 20 La formule
`

f´1
˘1

“
1

f 1 ˝ f´1
peut être retrouvée rapidement en dérivant la relation f ˝ f´1 “ IdJ :

1 “ pIdJq
1

“
`

f ˝ f´1
˘1

“
`

f´1
˘1

ˆ f 1 ˝ f´1.

1.4 Dérivées successives

Soit f : D ÝÑ C une fonction. On définit les dérivées successives de f sur D par récurrence :

f p0q “ f et pour tout k P N, si f pkq est définie et dérivable sur I, alors f pk`1q “
`

f pkq
˘1

.

Soit k P N.

• Lorsqu’elle est définie, la fonction f pkq, aussi notée
dkf

dxk
, est appelée fonction dérivée ke (ou d’ordre k) de f

sur D et la fonction f est dite k fois dérivable sur D.
On note DkpD,Kq l’ensemble des fonctions k fois dérivables sur D à valeurs dans K.

• La fonction f est dite de classe C k sur D lorsque f est k fois dérivable sur D et lorsque sa dérivée ke f pkq est
continue sur D. On note C kpD,Kq l’ensemble des fonctions de classe C k sur D à valeurs dans K.
En particulier, C 0pD,Kq est l’ensemble des fonctions continues sur D à valeurs dans K.

• La fonction f est dite de classe C 8 sur D lorsque f est dérivable autant de fois que l’on veut sur D.
L’ensemble des fonctions de classe C 8 sur D à valeurs dans K est noté C 8pD,Kq. On a donc

C 8pD,Kq “
č

kě0

C kpD,Kq “
č

kě1

DkpD,Kq.

Définition 21 – Dérivées successives et fonctions de classe C k

Attention ! Être de classe C 1, ce n’est pas être « dérivable et continue » – on est toujours continue
lorsque l’on est dérivable – mais être « dérivable de dérivée continue ».

Le lien entre continuité et dérivabilité donne lieu aux implications/inclusions suivantes :

Classe C 8 ... Classe C k Classe Dk Classe C k´1 ...

... Classe C 2 Dérivable
deux fois Classe C 1 Dérivable Continuité

= Classe C 0

Lipschitizienne

En outre, si f P C kpI,Kq avec k ě 1, alors f 1 P C k´1pI,Kq et F P C k`1pI,Kq, où F désigne une primitive de f sur I.

Exemple 22
• exp P C 8pR,Rq et, pour tout k P N, exppkq “ exp.
• Les fonctions usuelles du chapitre 5 sont de classe C 8 sur leurs domaines de dérivabilité respectifs.
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Dérivabilité 5

À l’instar des fonctions dérivables, on dispose de règles opératoires pour la dérivabilité (ou la classe) à l’ordre k.

Soit k P N.
(i) Combinaison linéaire, produit, quotient. Pour toutes fonctions f, g P C kpD,Cq et λ, µ P C, on a

λf ` µg P C kpD,Cq, fg P C kpD,Cq et, si g ne s’annule pas sur D,
f

g
P C kpD,Cq. Par ailleurs,

pλf ` µgqpkq “ λf pkq ` µgpkq et pfgqpkq “

k
ÿ

p“0

ˆ

k

p

˙

f ppqgpk´pq (formule de Leibniz †).

(ii) Composition. Si f P C kpD,Rq, g P C kpE,Cq et si f rDs Ă E, alors g ˝ f P C kpD,Cq.‡

(iii) Réciproque. Soit I un intervalle. Pour toute fonction f P C kpI,Rq bijective de I sur l’intervalle J “ f rIs,
si f 1 ne s’annule pas sur I, alors f´1 P C kpJ,Rq.

On peut remplacer dans chacune de ces assertions « C k » par « Dk » ou « C 8 ».

Théorème 23 – Opérations sur les dérivées successives

Démonstration. Cf. annexe A. ■

Exemple 24
• Les fonctions polynomiales sont de classe C 8 sur R. En outre, si f est une fonction polynomiale de degré n P N,

alors, pour tout k ą n, f pkq “ 0.
• Les fonctions rationnelles sont de classe C 8 sur leurs ensembles de définition respectifs.

✎ En pratique ✎ Pour montrer qu’une fonction est deux fois dérivable, on cherchera en priorité à appliquer le
théorème précédent. On ne s’amuse pas à montrer qu’elle est dérivable, à la dériver, puis à montrer que sa dérivée est
à nouveau dérivable !

Exemple 25 Soit α P C. La fonction x ÞÝÑ
1

x ` α
est de classe C 8 sur Rzt´αu et admet x ÞÝÑ

p´1qnn!

px ` αqn`1
pour

dérivée ne, pour tout n P N.

Exemple 26 La fonction f : x ÞÝÑ x2 ex est de classe C 8 sur R et, pour tout n P N,

f pnq : x ÞÝÑ
`

x2 ` 2nx ` npn ´ 1q
˘

ex .

2 Informations déduites de la dérivée d’une fonction

Attention ! À l’exception notable du théorème 36, les résultats des paragraphes 2.1 à 2.3 ne concernent
que les fonctions à valeurs réelles.

2.1 Extrema locaux d’une fonction dérivable

Soit f : D ÝÑ R une fonction et a P D.
• On dit que f admet un maximum (resp. minimum) local en a lorsque f est majorée (resp. minorée) par fpaq

au voisinage de a.
• On dit que a est un point critique de f lorsque f est dérivable en a avec f 1paq “ 0.

Définition 27 – Extremum local et point critique

Remarque 28 Un maximum local n’est pas nécessairement un
maximum de la fonction sur tout son domaine de définition. x

y

Minimum, donc
minimum local

Maximum, donc
maximum local

Maximum local,
mais pas global
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6 Dérivabilité

Attention ! Une fonction peut admettre un extremum local en un point sans être monotone à gauche et
monotone à droite au voisinage de ce point (cf. exercice 1).

Soit I un intervalle, f : I ÝÑ R une fonction et a un point intérieur de I. Si f est dérivable en a et possède
un extremum local en a, alors a est un point critique de f .

Théorème 29 – Condition nécessaire pour un extremum local en un point intérieur

Démonstration. ... ■

a

Situation standard du théorème
(cas d’un maximum local).

a

Il est crucial de ne pas se
situer en une extrémité de I.

a

Réciproque fausse : tout point
critique n’est pas un extremum local.

Attention ! La condition précédente n’est pas suffisante, comme le suggère la dernière figure ci-dessus et
l’exemple de la fonction cube x ÞÝÑ x3 sur R, dont la dérivée s’annule en 0 mais qui n’admet pas d’extremum local en
ce point. Pour une condition suffisante, on se reportera au théorème 39.

2.2 Le théorème de Rolle et le théorème des accroissements finis

Si f : ra , bs ÝÑ R est une fonction continue sur ra , bs, dérivable sur sa , br et telle que fpaq “ fpbq, alors il existe
un réel c P sa , br tel que f 1pcq “ 0.

Théorème 30 – Théorème de Rolle§

Démonstration. ... ■

Remarque 31
• Le théorème de Rolle est un théorème d’existence, pas d’unicité. Graphiquement, il

affirme que la courbe représentative de f possède au moins une tangente horizontale.
• En cinématique, le théorème de Rolle implique qu’un point mobile sur un axe qui

revient à son point de départ a vu sa vitesse s’annuler à un instant donné. a b

Exemple 32 Soit f P C 3pra , bs,Rq telle que fpaq “ f 1paq “ fpbq “ f 1pbq “ 0. Alors il existe un réel c P sa , br tel que
f p3qpcq “ 0.

Attention ! Le théorème de Rolle est faux pour les fonctions à valeurs complexes.
Un contre-exemple est fourni par la fonction t ÞÝÑ eit : cette fonction est dérivable sur r0 , 2πs et vérifie ei0 “ e2iπ “ 1,
mais sa dérivée t ÞÝÑ i eit ne s’annule pas sur r0 , 2πs.

†. Gottfried Wilhelm Leibniz (1646 à Leipzig – 1716 Hanovre) est un philosophe, scientifique, mathématicien, logicien, diplomate, juriste,
bibliothécaire et philologue allemand. On lui attribue généralement, avec Isaac Newton, l’invention du calcul infinitésimal.

‡. La formule de Faà di Bruno (mathématicien italien (1825 – 1888)) généralise la règle de dérivation des fonctions composées au cas

des dérivées d’ordre supérieur : pg ˝ fqpkq “
ÿ

pm1,...,mkqPNk

1m1`2m2`...`kmk“k

k!

m1!m2! ¨ ¨ ¨mk!

k
ź

j“1

˜

f pjq

j!

¸mj

ˆ gpm1`...`mkq ˝ f .

§. Michel Rolle (1652 à Ambert – 1719 à Paris) est un mathématicien français connu pour avoir établi, dans le cas particulier des
fonctions polynomiales réelles, le théorème qui porte aujourd’hui son nom.
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Dérivabilité 7

Une généralisation majeure du théorème de Rolle est l’égalité des accroissements finis.

Si f : ra , bs ÝÑ R est continue sur ra , bs et dérivable sur sa , br, alors il existe un réel c P sa , br tel que

f 1pcq “
fpbq ´ fpaq

b ´ a
.

Théorème 33 – Théorème des accroissements finis

Démonstration. Il suffit d’appliquer le théorème de Rolle à la fonction x ÞÝÑ fpxq ´ fpaq ´
fpbq ´ fpaq

b ´ a
px ´ aq. ■

L’interprétation de l’égalité des accroissements finis est la suivante :

Si j’ai des informations sur f 1, j’en ai aussi sur f .

Typiquement, toute majoration/minoration de f 1 peut être convertie en une majoration/minoration liée à f .

Exemple 34 Pour tout x ą 0,
1

x ` 1
ď lnpx ` 1q ´ lnx ď

1

x
.

Remarque 35
• Graphiquement, la formule des accroissements finis affirme qu’il existe au moins une

tangente à la courbe représentative de f qui soit parallèle à la droite passant par
les points de coordonnées pa, fpaqq et pb, fpbqq.

• En cinématique, la formule des accroissements finis implique que si une voiture
réalise un parcours à la vitesse moyenne de 90 km/h, alors il existe un instant du
trajet en lequel sa vitesse instantanée aura été de 90 km/h. a b

2.3 Constance, monotonie et dérivabilité

Soit I un intervalle et f P DpI,Cq, f est constante sur I si et seulement si f 1 est nulle sur I.
Théorème 36 – Caractérisation des fonctions constantes dérivables

Démonstration. ... ■

Soit I un intervalle et f P DpI,Rq.
(i) La fonction f est croissante sur I si et seulement si f 1 est positive sur I.
(ii) La fonction f est strictement croissante sur I si et seulement si f 1 est positive sur I et n’est identiquement

nulle sur aucun intervalle ra , bs avec a ă b.
En particulier, si f 1 est strictement positive sur I, alors f est strictement croissante sur I.

Des résultats similaires valent pour la décroissance.

Théorème 37 – Caractérisation des fonctions monotones dérivables

Démonstration. ... ■

Attention ! Dans les deux théorèmes précédents, l’hypothèse selon laquelle I est un intervalle est
cruciale. Ces théorèmes sont faux dès que I est une réunion d’intervalles disjoints.

x

y

I1 I2

y “ fpxq
f est constante sur I1 et I2,
ainsi f 1 “ 0 sur I1 Y I2,
mais f n’est pas constante
sur I1 Y I2.

x

y

I1 I2

y “ fpxq

f est croissante sur I1 et I2,
ainsi f 1 ě 0 sur I1 Y I2, mais f
n’est pas croissante sur I1 YI2.

Par ailleurs, on peut avoir f 1paq ą 0 en un point a sans que la fonction f soit strictement croissante au voisinage de a
(cf. exercice 1).
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8 Dérivabilité

Pour prévenir d’éventuels drames, on se limitera essentiellement à parler de monotonie sur des intervalles de R.

Exemple 38 La fonction définie sur R par fpxq “ x ´ sinx est strictement
croissante sur R.
En effet, par somme, f est dérivable sur R et, pour x P R, f 1

pxq “ 1´ cosx. Ainsi f 1
ě 0

sur R et f 1 s’annule sur l’ensemble t2kπ | k P Zu, qui ne contient aucun intervalle de la
forme ra , bs avec a ă b.

Terminons ce paragraphe avec une condition suffisante en lien avec la dérivée pour l’existence d’un extremum.

Soit I un intervalle, f : I ÝÑ R une fonction dérivable sur I et a un point intérieur de I. Si f 1 s’annule en a en
changeant de signe, alors f admet un extremum local en a.

Théorème 39 – Condition suffisante pour un extremum local en un point intérieur

Démonstration. Quite à changer f en ´f , il existe un voisinage sa ´ η , a ` ηr de a dans I, avec η ą 0, tel que f 1
ď 0 sur

sa ´ η , as et f 1
ě 0 sur ra , a ` ηr. Alors f est décroissante sur sa ´ η , as, ainsi f ě fpaq sur sa ´ η , as, et f est croissante sur

ra , a ` ηr, ainsi f ě fpaq sur ra , a ` ηr. Finalement f admet un minimum local en a. ■

Exemple 40 La fonction f définie sur R par fpxq “ x3 ´ 3x admet des extrema locaux en ´1 et 1.

2.4 Inégalité des accroissements finis et fonctions lipschitziennes

Soit I un intervalle et f P DpI,Cq. S’il existe un réel positif k tel que |f 1pxq| ď k, pour tout x P I, alors f est
k-lipschitzienne sur I.

Théorème 41 – Inégalité des accroissements finis

Démonstration. ... ■

Exemple 42
• Les fonctions sinus et cosinus sont 1-lipschitzienne sur R, leurs dérivées respectives étant bornées par 1.

En particulier,
@x P R, |sinx| ď |x|.

• Si f P C 1pra , bs,Cq, alors f est lipschitzienne de rapport max
ra,bs

∣∣f 1
∣∣ sur ra , bs.

En effet, f 1 est continue sur le segment ra , bs, par hypothèse, et y est donc bornée en atteignant ses bornes, d’après le
théorème des bornes atteintes.

Remarque 43
• Rappelons qu’une fonction peut-être lipschitzienne et non dérivable (par exemple x ÞÝÑ |x|).
• En revanche, si f est une fonction dérivable et k-lipschitzienne sur l’intervalle I,

alors, pour tout x P I, on a

@t P Iztxu,

∣∣∣∣fptq ´ fpxq

t ´ x

∣∣∣∣ ď k

et il vient, par passage à la limite selon t Ñ x, |f 1pxq| ď k. Ainsi |f 1| est majorée
par k sur I.

• Graphiquement, si f est dérivable sur I et de dérivée f ’ bornée par k, alors,
pour tout abscisse a P I, la courbe de f se situe entre les droites d’équations
y “ fpaq ˘ kpx ´ aq.

a

b

y “ b ` kpx ´ aq

y “ b ´ kpx ´ aq
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2.5 Une condition suffisante de dérivabilité en un point
Commençons par rappeler que les limites

lim
xÑa

fpxq ´ fpaq

x ´ a
et lim

xÑa
f 1pxq

sont conceptuellement très différentes. La première est liée à la dérivabilité de la fonction f en a, tandis que la seconde
est liée à la continuité de la dérivée f 1 en a. Dans l’énoncé suivant, la notation lim

xÑa
x‰a

f 1pxq désigne la limite en a de la
restriction de f 1 à Iztau.

Soit I un intervalle, a P I, ℓ P R et f : I ÝÑ R. Si la fonction f est continue sur I, dérivable sur Iztau et si
lim
xÑa
x‰a

f 1pxq “ ℓ, alors

lim
xÑa

fpxq ´ fpaq

x ´ a
“ ℓ.

En particulier, si ℓ P R, alors f est dérivable en a (donc sur I) et f 1 est continue en a.

Théorème 44 – Théorème de la limite de la dérivée

Démonstration. ... ■

Attention ! Le théorème précédent énonce seulement une condition suffisante pour établir l’existence du
nombre dérivé en a. Il se peut que f 1paq existe sans que f 1|Iztau ait une limite en a (cf. question 2 de l’exercice 1).

Exemple 45 La fonction x ÞÝÑ Arcsin
`

1 ´ x4
˘

est de classe C 1 sur r´1 , 1s.

Compétences à acquérir

• Étudier et exploiter la dérivabilité d’une fonction : exercices 2 à 4.
• Calculer des dérivées successives : exercices 8 et 10 à 12.
• Utiliser le théorème de Rolle : exercices 15 à 17, 21 et 27 à 30.
• Utiliser les accroissements finis : exercices 13 et 14, 23 à 25.
• Utiliser le théorème de la limite de la dérivée : exercices 38 à 39.

Quelques résultats classiques :
• Extension du théorème de Rolle (exercice 20).
• Théorème de Darboux (exercice 26).
• Point fixe répulsif pour une suite récurrente un`1 “ fpunq (exercice 34).
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A Démonstrations
Preuve du théorème 19. Soit b P J .

• Puisque f est dérivable en f´1
pbq, lim

xÑf´1pbq

fpxq ´ f
`

f´1
pbq

˘

x ´ f´1pbq
“ f 1

`

f´1
pbq

˘

et, par passage à l’inverse (f 1 ne s’annulant pas

par hypothèse),

lim
xÑf´1pbq

x ´ f´1
pbq

fpxq ´ fpf´1pbqq
“

1

f 1pf´1pbqq
.

• En outre, puisque f est continue et bijective, f´1 est continue en b, soit lim
yÑb

f´1
pyq “ f´1

pbq. On a alors,

lim
yÑb

f´1
pyq ´ f´1

pbq

y ´ b
“ lim

yÑb

f´1
pyq ´ f´1

pbq

fpf´1pyqq ´ fpf´1pbqq
“

1

f 1pf´1pbqq
,

par composition des limites.

Preuve du théorème 23. Les théorèmes opératoires 14 et 19 se généralisent aux fonctions de classe C 1, via les règles
opératoires sur la continuité. On raisonne alors par récurrence sur k P N, l’initialisation étant claire dans chaque cas.

(i) Ppkq : « @λ, µ P R, @f, g P C k
pD,Rq, λf ` µg P C k

pD,Rq et pλf ` µgq
pkq

“ λf pkq
` µgpkq ».

Hérédité. On suppose le résultat vrai au rang k. Soit f, g P C k`1
pD,Rq, alors f, g P C 1

pD,Rq, donc λf `µg P C 1
pD,Rq et,

pour tous λ, µ P R, pλf ` µgq
1

“ λf 1
`µg1. Or f 1, g1

P C k
pD,Rq ainsi, par hypothèse de récurrence, pλf ` µgq

1
P C k

pD,Rq,
i.e. λf ` µg P C k`1

pD,Rq. En outre,

pλf ` µgq
pk`1q

“

´

pλf ` µgq
pkq

¯1

“

´

λf pkq
` µgpkq

¯1

“ λ
´

f pkq
¯1

` µ
´

gpkq
¯1

“ λf pk`1q
` µgpk`1q.

Ppkq : « @f, g P C k
pD,Rq, fg P C k

pD,Rq et pfgq
pkq

“

k
ÿ

p“0

˜

k

p

¸

f ppqgpk´pq ».

Hérédité. On suppose le résultat vrai au rang k. Soit f, g P C k`1
pD,Rq, alors f, g P C 1

pD,Rq, donc fg P C 1
pD,Rq et

pfgq
1

“ f 1g ` fg1. Or f 1g, fg1
P C k

pD,Rq, par hypothèse de récurrence, ainsi pfgq
1

P C k
pD,Rq, par combinaison linéaire,

i.e. fg P C k`1
pD,Rq. En outre,

pfgq
pn`1q

“

´

pfgq
pnq

¯1

“
HR

˜

n
ÿ

k“0

˜

n

k

¸

f pkqgpn´kq

¸1

“

n
ÿ

k“0

˜

n

k

¸

´

f pkqgpn´kq
¯1

“

n
ÿ

k“0

˜

n

k

¸

ˆ

´

f pkq
¯1

gpn´kq
` f pkq

´

gpn´kq
¯1

˙

. . . “

n
ÿ

k“0

˜

n

k

¸

´

f pk`1qgpn´kq
` f pkqgpn´k`1q

¯

“
j“k`1

n`1
ÿ

j“1

˜

n

j ´ 1

¸

f pjqgpn´j`1q
`

n
ÿ

k“0

˜

n

k

¸

f pkqgpn´k`1q

. . . “ f pn`1qgp0q
`

n
ÿ

k“1

˜˜

n

k ´ 1

¸

`

˜

n

k

¸¸

loooooooooooomoooooooooooon

Formule de Pascal

f pkqgpn´k`1q
` f p0qgpn`1q

“

n`1
ÿ

k“0

˜

n ` 1

k

¸

f pkqgpn´k`1q.

Ppkq : « @f, g P C k
pD,Rq, p@x P D, gpxq ‰ 0q ùñ

f

g
P C k

pD,Rq ».

Hérédité. On suppose le résultat vrai au rang k. Soit f, g P C k`1
pD,Rq, g ne s’annulant pas sur D, alors f, g P C 1

pD,Rq,

donc
f

g
P C 1

pD,Rq avec
ˆ

f

g

˙1

“
f 1g ´ fg1

g2
. Or f 1g ´ fg1, g2 P C k

pD,Rq, par produit et combinaison linéaire, ainsi
ˆ

f

g

˙1

P C k
pD,Rq, par hypothèse de récurrence, i.e.

f

g
P C k`1

pD,Rq.

(ii) Ppkq : « @f P C k
pD,Rq, @g P C k

pE,Rq, f rDs Ă E ùñ g ˝ f P C k
pD,Rq ».

Hérédité. On suppose le résultat vrai au rang k. Soit f P C k`1
pD,Rq et g P C k`1

pE,Rq telles que f rDs Ă E, alors
f P C 1

pD,Rq et g P C 1
pE,Rq, donc g ˝ f P C 1

pD,Rq et pg ˝ fq
1

“ f 1
ˆ g1

˝ f . Or f 1
P C k

pD,Rq, et g1
˝ f P C k

pE,Rq par
hypothèse de récurrence, ainsi pg ˝ fq

1
P C k

pD,Rq, par produit, i.e. g ˝ f P C k`1
pD,Rq, par produit.

(iii) Ppkq : « Pour tout f P C k
pI,Rq, si f est bijective de I sur J “ f rIs et si f 1 ne s’annule pas sur I, alorsf´1

P C k
pJ,Rq ».

Hérédité. On suppose le résultat vrai au rang k. Soit f P C k`1
pI,Rq, bijective de I sur J “ f rIs et telle que f 1 ne s’annule

pas sur I. Alors f P C 1
pI,Rq, donc f´1

P C 1
pJ,Rq et

`

f´1
˘1

“
1

f 1 ˝ f´1
. Or f´1

P C k
pJ,Rq, par hypothèse de récurrence,

ainsi
`

f´1
˘1

P C k
pJ,Rq, par composition et quotient, i.e. f´1

P C k`1
pJ,Rq.
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