
18 Corps des fractions rationnelles

Dans l’ensemble de ce chapitre, K désigne l’un des corps R ou C †.

1 Construction du corps des fractions rationnelles

Le caractère intègre de l’anneau KrXs va nous permettre de construire son corps des fractions‡ vis-à-vis duquel il
s’identifiera à un sous-anneau. On notera l’analogie totale avec le corps des rationnels Q qui n’est rien d’autre que le
corps des fractions de l’anneau intègre Z des entiers relatifs.

Définition. On admet l’existence d’un ensemble, noté KpXq, satisfaisant les trois assertions suivantes.

(i) À tout couple pP,Qq P KrXs2 avec Q non nul, on peut associer un unique élément de KpXq noté
P

Q
.

(ii) Tout élément F de KpXq peut être écrit sous la forme
P

Q
, où pP,Qq P KrXs2 avec Q non nul. Un tel couple

pP,Qq est appelé un représentant de F .
(iii) Pour tous pP,Qq, pS, T q P KrXs2 avec Q et T non nuls,

P

Q
“

S

T
ðñ PT “ SQ.

Les éléments de KpXq sont appelés les fractions rationnelles à coefficients dans K.

Structure de corps. L’ensemble KpXq est muni d’une structure de corps via les deux lois de composition internes
` et ˆ définies par

@pP,Qq, pS, T q P KrXs ˆ pKrXszt0uq,
P

Q
`

S

T
“

PT ` SQ

QT
et

P

Q
ˆ

S

T
“

PS

QT
,

ces définitions étant légitimes car indépendantes du choix des représentants pP,Qq et pS, T q des fractions ration-

nelles
P

Q
et

S

T
.

Les polynômes sont des fractions rationnelles. L’application P ÞÝÑ
P

1
est un morphisme injectif d’anneaux

de KrXs dans KpXq. Cette injection permet d’identifier tout polynôme P P KrXs à la fraction rationnelle P {1
et cette identification fait de KrXs un sous-anneau de KpXq.

Définition-théorème 1 – Corps des fractions rationnelles

Démonstration. Admis, conformément au programme. On trouvera le détail d’une construction de KpXq à l’annexe A. ■

Exemple 2 Dans RpXq, les fractions rationnelles
1

X
et

X ` 1

XpX ` 1q
sont égales, puisque 1ˆXpX ` 1q “ X ˆ pX ` 1q.

✎ En pratique ✎ Pour tous P,Q P KrXs avec Q non nul, si P est non nul, alors
ˆ

P

Q

˙´1

“
Q

P
.

Exemple 3 – Conjuguée d’une fraction rationnelle La fraction rationnelle
P

Q
ne dépend pas du choix du représentant

pP,Qq de la fraction rationnelle F P CpXq, on l’appelle la fraction rationnelle conjuguée de F et on la note F . On
déduit alors immédiatement des propriétés sur les polynômes que

@F,G P CpXq, F ` G “ F ` G et FG “ F G.

En effet, soit pP,Qq et pS, T q deux représentants de F , on a donc PT “ SQ, ce qui entraîne P T “ S Q.

†. L’ensemble des définitions et résultats de la première partie de ce chapitre restent valables sur un corps K quelconque.
‡. En théorie des anneaux, le corps des fractions d’un anneau intègre A est le plus petit corps commutatif (à isomorphisme près)

contenant A. Sa construction est une généralisation à un anneau intègre de la construction du corps des rationnels Q à partir de l’anneau
des entiers relatifs Z. La construction donnée à l’annexe A reste effectivement valable pour un anneau A intègre quelconque.
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2 Corps des fractions rationnelles

1.1 Forme irréductible d’une fraction rationnelle
La notion de forme irréductible pour une fraction rationnelle est l’analogue de celle déjà connue pour les nombres

rationnels.

• On appelle représentant irréductible d’une fraction rationnelle F tout représentant pP,Qq de F tel que les
polynômes P et Q soient premiers entre eux.

• On appelle représentant irréductible unitaire d’une fraction rationnelle F tout représentant irréductible pP,Qq

de F tel que le polynôme Q soit unitaire.

Définition 4 – Représentant irréductible d’une fraction rationnelle

(i) Si P {Q est une forme irréductible d’une fraction rationnelle S{T , alors

DR P KrXs, S “ RP et T “ RQ.

(ii) Si P1{Q1 et P2{Q2 sont deux formes irréductibles d’une même fraction rationnelle, alors

Dλ P K˚, P2 “ λP1 et Q2 “ λQ1.

(iii) Toute fraction rationnelle admet un et un seul représentant irréductible unitaire.

Théorème 5 – Existence et « unicité » de la forme irréductible

Démonstration.
(i) Par hypothèse

P

Q
“

S

T
, soit PT “ SQ. Ainsi Q divise PT , or P et Q sont premiers entre eux, par conséquent Q divise T

et il existe donc R P KrXs tel que T “ QR, d’où

S “
PT

Q
“

PQR

Q
“ PR.

(ii) D’après (i), Q1 et Q2 sont associés, or ils sont non nuls, ainsi le polynôme R précédent est une constante non nulle.
(iii) L’unicité est clair d’après le point précédent. Pour l’existence, considérons un représentant quelconque pP,Qq : on com-

mence par diviser P et Q par leur PGCD, puis on divise le numérateur et le dénominateur obtenu par le coefficient
dominant de ce dernier.

■

Exemple 6

• La forme irréductible unitaire de
X2 ` X ´ 2

X2 ` 2X ´ 3
est

X ` 2

X ` 3
.

En effet,
`

X2 ` X ´ 2
˘

^
`

X2 ` 2X ´ 3
˘

“ ppX ´ 1qpX ` 2qq^ppX ´ 1qpX ` 3qq “ X ´ 1.
• La forme irréductible unitaire d’un polynôme P est P {1. E particulier, 0{1 est la forme irréductible unitaire de

la fraction rationnelle nulle.

Exemple 7 Pour tout F P CpXq, F P RpXq si et seulement si F “ F .

1.2 Degré et partie entière d’une fraction rationnelle

Soit F “ P {Q P KpXq. La quantité degP ´ degQ, qui appartient à Z Y t´8u et ne dépend pas du représentant
pP,Qq choisi pour la fraction F , est appelée le degré de F et est aussi notée degF .

Définition-théorème 8 – Degré d’une fraction rationelle

Démonstration. Soit pP,Qq et pS, T q deux représentants de F .
• Puisque Q ‰ 0, degQ P N et la quantité degP ´ degQ est bien définie et à valeurs dans Z Y t´8u.
• Par hypothèse, PT “ SQ dans KrXs, ainsi

degP ` deg T “ degpPT q “ degpQSq “ degS ` degQ

et puisque degQ et deg T sont des entiers, il vient degP ´ degQ “ degS ´ deg T . ■

Remarque 9 Un polynôme P s’identifie à la fraction rationnelle P {1 dont le degré est degP ´ deg 1 “ degP . Ainsi
la définition du degré sur KpXq prolonge celle du degré défini sur KrXs, ce qui légitime cette notation commune.
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Corps des fractions rationnelles 3

Exemple 10
• À l’instar des polynômes, le degré d’une fraction rationnelle F vaut ´8 si et seulement si F est nulle.

• deg

ˆ

14X2 ´ 3

7X5 ` 8X3

˙

“ deg
`

14X2 ´ 3
˘

´ deg
`

7X5 ` 8X3
˘

“ ´3.

On dispose alors de propriétés identiques à celles connues pour les polynômes.

Soit F et G deux fractions rationnelles à coefficients dans K.

(i) degpF ` Gq ď maxtdegF,degGu. (ii) degpFGq “ degF ` degG.

Théorème 11 – Propriété du degré

Démonstration. ... ■

Toute fraction rationnelle F s’écrit de façon unique comme la somme d’un polynôme, appelé la partie entière de
F , et d’une fraction rationnelle de degré strictement négatif.

Définition-théorème 12 – Partie entière d’une fraction rationnelle

Démonstration. ... ■

✎ En pratique ✎ La partie entière d’une fraction rationnelle F “ P {Q s’obtient comme le quotient de la division
euclidienne du numérateur P par le dénominateur Q. En particulier, si degF ě 0, alors le degré de la partie entière
de F est degF .

Exemple 13
• La partie entière d’une fraction rationnelle de degré strictement négatif est nulle.
• La partie entière d’une fraction rationnelle de degré nul est le polynôme constant égal au quotient du coefficient

dominant du numérateur par celui du dénominateur.

• La partie entière de
X5

pX2 ` X ` 1q
2 est X ´ 2 et

X5

pX2 ` X ` 1q
2 “ X ´ 2 `

X3 ` 4X2 ` 3X ` 2

pX2 ` X ` 1q
2 .

En effet, la division euclidienne de X5 par
`

X2
` X ` 1

˘2 est X5
“ pX ´ 2q

`

X2
` X ` 1

˘2
` X3

` 4X2
` 3X ` 2.

• La partie entière d’une fraction rationnelle paire (resp. impaire) est paire (resp. impaire).

• La partie entière de la fraction rationnelle F “
X5 ` X3 ` X

pX2 ` 1q
2 est X.

En effet, la partie entière de F est de la forme X ` a, or elle est impaire, à l’instar de F , ce qui impose a “ 0.

1.3 Zéros, pôles et fonctions rationnelles

Soit F une fraction rationnelle à coefficients dans K de forme irréductible P {Q.
• On appelle zéro de F (resp. pôle de F ) toute racine du numérateur P (resp. du dénominateur Q).
• Lorsque F est non nulle, l’ordre de multiplicité d’un zéro (resp. pôle) α de F est l’ordre de multiplicité de
α en tant que racine de P (resp. Q).

Définition-théorème 14 – Zéro, pôle, multiplicité

Démonstration. D’après le point (ii) du théorème 5, les formes irréductibles de F sont les
λP

λQ
, avec λ P K˚, ainsi les notions

introduites ne dépendent pas du représentant irréductible choisi pour F . ■

Attention ! Les zéros et les pôles d’une fraction rationnelle ne peuvent être obtenus qu’à partir d’une de
ses formes irréductibles.

Exemple 15 La fraction rationnelle F “
X3 ´ 1

X2 ´ 1
n’admet 1 ni comme zéro, ni comme pôle, puisque F “

X2 ` X ` 1

X ` 1
et, sous cette forme irréductible, les zéros de F sont j et j, et l’unique pôle de F est ´1 (chacun de multiplicité 1).
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4 Corps des fractions rationnelles

Remarque 16 Un élément λ de K ne peut pas être à la fois zéro et pôle d’une fraction rationnelle F . Dans le cas
contraire, avec F “ P {Q une forme irréductible, on aurait P pλq “ Qpλq “ 0, et les polynômes P et Q seraient donc
divisibles par X ´ λ, ce qui contredirait le caractère irréductible de l’écriture P {Q.

Soit F une fraction rationnelle à coefficients dans K, de forme irréductible P {Q. Notons A l’ensemble des

pôles de F (i.e. les racines de Q dans K). Pour tout α P KzA, on définit F pαq “
P pαq

Qpαq
, et la fonction définie sur

KzA par x ÞÝÑ F pxq est appelée la fonction rationnelle associée à la fraction rationnelle F .

Définition-théorème 17 – Fonction rationnelle

Démonstration. Idem définition-théorème 14. ■

Exemple 18 La fonction rationnelle f associée à la fraction rationnelle
X2 ´ 4X ` 3

X2 ´ 1
est définie sur Rzt´1u par

fpxq “
x ´ 3

x ` 1
.

Remarque 19
• Si S{T est une écriture quelconque (non nécessairement irréductible) d’une fraction rationnelle F et si T pαq ‰ 0,

alors α n’est pas un pôle de F et on a F pαq “
Spαq

T pαq
.

• Soit F,G P KpXq et λ, µ P K. Si α P K n’est un pôle ni de F ni de G, alors α n’est pôle ni de la combinaison
linéaire λF ` µG ni du produit FG et

pλF ` µGqpαq “ λF pαq ` µGpαq et pFGqpαq “ F pαqGpαq.

2 Décomposition en éléments simples sur C et sur R
Il est immédiat de réduire une somme de fractions rationnelles au même dénominateur

X `
1

X
´

1

X ` 1
“

X2pX ` 1q

XpX ` 1q
`

X ` 1

XpX ` 1q
´

X

XpX ` 1q
“

X3 ` X2 ` 1

XpX ` 1q
.

Cette section présente les outils pour réaliser l’opération inverse consistant à décomposer une fraction rationnelle
« compliquée » en une somme de morceaux « simples ». Commençons par illustrer ce processus sur l’exemple suivant.

Exemple introductif. On cherche à décomposer sur R la fraction rationnelle F “
X8 ` 8X ` 3

pX ´ 1q3pX ´ 2qpX2 ` 1q
2 .

• On commence par calculer la partie entière de F : le quotient de la division euclidienne de X8 ` 8X ` 3 par
pX ´ 1q3pX ´ 2q

`

X2 ` 1
˘2 est 1, ainsi

F “ 1 `

degă0
hkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkj

. . .

pX ´ 1q3pX ´ 2qpX2 ` 1q
2 .

• On détermine la factorisation irréductible sur R du dénominateur : ici pX ´ 1q3pX ´ 2q
`

X2 ` 1
˘2 est déjà sous

forme irréductible, puisque X2 ` 1 est sans racine réelle.
• On peut alors montrer qu’il existe des réels a, b, c, d, e, f, g et h tels que

F “ 1 `
a

pX ´ 1q3
`

b

pX ´ 1q2
`

c

X ´ 1
`

d

X ´ 2
`

eX ` f

pX2 ` 1q
2 `

gX ` h

X2 ` 1

et cette écriture correspond à la décomposition en éléments simples de F .
✕ Chaque facteur pX´λqm du dénominateur est associé à une somme

am
pX ´ λqm

`
am´1

pX ´ λqm´1
` . . .`

a1
X ´ λ

de m termes, avec a1, . . . , am P R.
✕ Chaque facteur pX2 `aX `bqm du dénominateur, pour lequel X2 `aX `b est sans racine réelle, est associé

à une somme
cmX ` dm

pX2 ` aX ` bqm
` . . . `

c1X ` d1
X2 ` aX ` b

de m termes, avec c1, . . . , cm, d1, . . . , dm P R.

Il reste alors à apprendre à calculer explicitement les coefficients a, b, c, d, e, f, g et h.

Une application majeure de la décomposition en éléments simples des fractions rationnelles se concrétisera dans le
calcul des primitives de telles fonctions (cf. section 2.3).
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Corps des fractions rationnelles 5

2.1 Existence et unicité

Soit F P CpXq de partie entière E et de pôles distincts λ1, . . . , λr de multiplicités respectives m1, . . . ,mr. Il existe
alors une et une seule famille pai,kq 1ďiďr

1ďkďmi

de nombres complexes telle que

F “ E `

r
ÿ

i“1

mi
ÿ

k“1

ai,k

pX ´ λiq
k

looooooomooooooon

Partie polaire
associée au pôle λi

.

Une telle écriture de F est appelée sa décomposition en éléments simples sur C.

Théorème 20 – Décomposition en éléments simples sur C

Démonstration. Admis conformément au programme. ■

Exemple 21 Dans les exemples suivants, où l’on fera apparaître la partie entière même lorsqu’elle est nulle, les fractions
proposées sont à coefficients réels et donc égales à leur conjuguée. Par conséquent, par unicité de la décomposition
en éléments simples, certains coefficients sont égaux à conjugaison près tandis que d’autres sont réels (cf. paragraphe
2.2).

1. Il existe a P C tel que
X3 ` 4X2 ` 1

X2 ` 1
“ X ` 4 `

a

X ´ i
`

a

X ` i
.

2. Il existe a, b, c, d P R et e P C tels que

X4 ` X ` 1

XpX ´ 5q3pX2 ` 4q
“ 0 `

a

X
`

b

pX ´ 5q3
`

c

pX ´ 5q2
`

d

X ´ 5
`

e

X ´ 2i
`

e

X ` 2i
.

3. Il existe a P R et b, c P C tels que
1

XpX2 ` X ` 1q
2 “ 0 `

a

X
`

b

pX ´ jq2
`

c

X ´ j
`

b

pX ´ jq2
`

c

X ´ j
.

Soit F “
P

Q
P RpXq sous forme irréductible de partie entière E. On considère la factorisation irréductible

de Q sur R : Q “ α
r

ź

i“1

pX ´ λiq
mi ˆ

s
ź

j“1

`

X2 ` bjX ` cj
˘nj (notations du théorème 59 du chapitre 17).

Il existe alors des familles uniques pai,kq 1ďiďr
1ďkďmi

, puj,kq 1ďjďs
1ďkďnj

et pvj,kq 1ďjďs
1ďkďnj

de nombres réels telles que

F “ E `

Éléments simples
de première espèce

hkkkkkkkkkkkikkkkkkkkkkkj

r
ÿ

i“1

mi
ÿ

k“1

ai,k

pX ´ λiq
k

looooooomooooooon

Partie polaire
associée au pôle λi

`

Éléments simples de seconde espèce
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

s
ÿ

j“1

nj
ÿ

k“1

uj,kX ` vj,k

pX2 ` bjX ` cjq
k

.

Une telle écriture de F est appelée sa décomposition en éléments simples sur R.

Théorème 22 – Décomposition en éléments simples sur R

Démonstration. Admis conformément au programme. ■

Exemple 23 On reprend les exemples donnés à l’exemple 21.

1. Il existe a1, b1 P R tel que
X3 ` 4X2 ` 1

X2 ` 1
“ X ` 4 `

a1X ` b1

X2 ` 1
.

2. Il existe a1, b1, c1, d1, e1, f 1 P R

X4 ` X ` 1

XpX ´ 5q3pX2 ` 4q
“ 0 `

a1

X
`

b1

pX ´ 5q3
`

c1

pX ´ 5q2
`

d1

X ´ 5
`

e1X ` f 1

X2 ` 4
.

3. Il existe a1, b1, c1, d1, e1 P R tels que
1

XpX2 ` X ` 1q
2 “ 0 `

a1

X
`

b1X ` c1

pX2 ` X ` 1q
2 `

d1X ` e1

X2 ` X ` 1
.
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6 Corps des fractions rationnelles

Soit P P KrXs un polynôme non constant et scindé de racines λ1, . . . , λr dans K de multiplicités respectives
m1, . . . ,mr, alors

P 1

P
“

r
ÿ

i“1

mi

X ´ λi
.

Théorème 24 – Décomposition en éléments simples de P1{P

Démonstration. ... ■

2.2 Méthodes pratiques d’obtention des coefficients

Soit F “
P

Q
une fraction rationnelle à coefficients complexes de partie entière E et de pôles distincts λ1, . . . , λr de

multiplicités respectives m1, . . . ,mr. Sa décomposition en éléments simples sur C est de la forme

F “ E `

r
ÿ

i“1

mi
ÿ

k“1

ai,k

pX ´ λiq
k
.

Partie entière. La partie entière E s’obtient comme le quotient de la division euclidienne de P par Q.

Si la fraction est à coefficients réels... et si λ est un pôle non réel de F de multiplicité m, alors λ est aussi un
pôle de F d’ordre m et les coefficients des parties polaires associées à λ et λ sont conjugués deux à deux. Par ailleurs,
les coefficients des parties polaires associées aux pôles réels sont réels.

En effet, puisque le dénominateur Q est à coefficients réels, si λ est une racine non réelle de Q, alors λ l’est aussi avec la

même multiplicité. Écrivons F sous la forme F “

m
ÿ

k“1

ak,λ

pX ´ λq
k

` G, où λ n’est pas un pôle de la fraction rationnelle G, alors

F “ F “

m
ÿ

k“1

ak,λ
`

X ´ λ
˘k

` G

et λ n’est pas un pôle de G. Ainsi, la partie polaire associée au pôle λ est
m
ÿ

k“1

ak,λ
`

X ´ λ
˘k

, par unicité de la décomposition en

éléments simples. Autrement dit, ak,λ “ ak,λ et, en particulier lorsque λ est réel, on obtient ak,λ “ ak,λ.

Si la fraction est paire ou impaire... et si λ est un pôle de F d’ordre m, alors ´λ est aussi un pôle de F de même
multiplicité m. Il découle alors de la comparaison des décompositions en éléments simples de F pXq et F p´Xq “ ˘F pXq

des relations entre les coefficients des parties polaires associées aux pôles λ et ´λ.

Exemple 25 La fraction F “
4X

pX2 ´ 1q
2 se décompose en éléments simples sous la forme

F “
a

pX ´ 1q2
`

b

X ´ 1
`

c

pX ` 1q2
`

d

X ` 1

(la partie entière est nulle) et

F pXq “ ´F p´Xq “
´a

p´X ´ 1q2
`

´b

´X ´ 1
`

´c

p´X ` 1q2
`

´d

´X ` 1
“

´a

pX ` 1q2
`

b

X ` 1
`

´c

pX ´ 1q2
`

d

X ´ 1
.

L’unicité de la décomposition en éléments simples donne alors c “ ´a et d “ b.

Si la fraction est de degré strictement négatif... alors la fonction rationnelle x ÞÝÑ xF pxq définie sur une partie de

R a une limite finie en `8. Il en découle une relations entre les coefficients des termes en
1

X ´ λi
de la décomposition

en éléments simples de F .

Exemple 25 – (suite) Puisque degF “ ´3 ă 0, la limite de x ÞÝÑ xF pxq en `8 donne

0 “ lim
xÑ`8

xF pxq “ lim
xÑ`8

ˆ

ax

px ´ 1q2
`

bx

x ´ 1
`

cx

px ` 1q2
`

dx

x ` 1

˙

“ b ` d,

ce qui combiné à d “ b donne b “ d “ 0.
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Corps des fractions rationnelles 7

Multiplication par pX ´ λqm puis évaluation en λ (élément simple de première espèce). Si λ est un pôle de
F de multiplicité m, le coefficient am du terme

am
pX ´ λqm

de la partie polaire de F associée au pôle λ s’obtient en

évaluant en λ l’expression pX ´ λqmF , où la multiplication de F par pX ´ λqm permet d’« effacer » le pôle λ.

Exemple 25 – (suite et fin) L’évaluation de pX ´ 1q2F en 1 donne

a “
“

pX ´ 1q2F
‰

p1q “

„

4X

pX ` 1q2

ȷ

p1q “
4

p1 ` 1q2
“ 1.

En somme, on a donc F “
1

pX ´ 1q2
´

1

pX ` 1q2
.

S’il ne reste qu’un ou deux coefficients à calculer... on peut évaluer F en une ou deux valeurs simples, qui ne
sont pas des pôles de F .

Bilan Pour déterminer les coefficients de la décomposition en éléments simples d’une fraction rationnelle F , on
pourra :

• obtenir des relations sur les coefficients si F est à coefficients réels (pour une décomposition sur C) ou paire/impaire ;
• si degF ă 0, multiplier par X puis passer à la limite en `8 ;
• multiplier par pX ´ λqm puis évaluer en λ ;
• évaluer en certains points.

Évidemment, une stratégie imparable, mais potentiellement fastidieuse, consiste à mettre les deux écritures de F au
même dénominateur et à identifier les coefficients des polynômes aux numérateurs.

Exemple 26
X ` 3

pX ` 1q2pX ` 2q
“

2

pX ` 1q2
´

1

X ` 1
`

1

X ` 2
.

Calcul des coefficients pour les éléments simples de seconde espèce. Si l’on cherche à déterminer la décompo-
sition en éléments simples sur R de F P RpXq, celle-ci est de la forme

F “ E `

r
ÿ

i“1

mi
ÿ

k“1

ai,k

pX ´ λiq
k

`

s
ÿ

j“1

nj
ÿ

k“1

uj,kX ` vj,k

pX2 ` bjX ` cjq
k
.

Les techniques précédentes restent valables pour la détermination de E et des coefficients ai,k des élément simple

de première espèce. Voyons comment procéder pour un terme de seconde espèce
uX ` v

pX2 ` bX ` cq
n . Par définition, le

trinôme réel X2 ` bX ` c admet deux racines complexes conjuguées ω et ω et, comme pour les éléments simples de
première espèce, on obtient une relation par évaluation :

uω ` v “
“

pX2 ` bX ` cqnF
‰

pωq

qui permet de déduire les valeurs de u et v. Notons qu’en pratique il est inutile de calculer explicitement ω. Il suffit
d’exploiter la relation ω2 “ ´bω ´ c.

Exemple 27
1

pX ´ 1q2pX2 ` 4q
“

1

5pX ´ 1q2
´

2

25pX ´ 1q
`

2X ´ 3

25pX2 ` 4q
.

Le théorème qui suit est spécifique aux pôles simples et commode quand le dénominateur est donné sous forme
développée.

Soit F “ P {Q P CpXq sous forme irréductible et λ P C.

Si λ est un pôle simple de F , alors le coefficient a de la partie polaire associée
a

X ´ λ
est a “

P pλq

Q1pλq
.

Théorème 28 – Partie polaire associée à un pôle simple

Démonstration. ... ■
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8 Corps des fractions rationnelles

Exemple 29 Pour tout n P N˚,
1

Xn ´ 1
“

1

n

ÿ

ωPUn

ω

X ´ ω
.

Remarque 30 – Généralisation du théorème 28 (HP) Soit F “ P {Q P CpXq sous forme irréductible et λ P C.

Si λ est un pôle d’ordre n de F , alors le coefficient a du terme
a

pX ´ λqn
de la partie polaire associée est a “

n!P pλq

Qpnqpλq
.

Une fois déterminer ce terme, on peut le retrancher à F pour obtenir une fraction rationnelle dont λ sera un pôle
d’ordre strictement inférieur à n et itérer cette démarche.

Pour terminer, observons que, lorsque les pôles non réels d’une fraction rationnelle à coefficients réels sont
simples, on peut aisément obtenir la décomposition en éléments simples sur R à partir de celle sur C en regroupant
les parties polaires conjuguées.

Exemple 31 Pour tout n P N˚, la décomposition en éléments simples de
1

X2n ´ 1
sur R est

1

X2n ´ 1
“

1

2npX ´ 1q
´

1

2npX ` 1q
`

1

n

n´1
ÿ

k“1

cos
`

kπ
n

˘

X ´ 1

X2 ´ 2 cos
`

kπ
n

˘

X ` 1
.

2.3 Application au calcul de primitive/intégrale
Comme cela a été annoncé au début de cette section, plus aucun calcul de primitive de fractions rationnelles réelles

ne peut dorénavant nous résister – sous réserve d’être capable d’obtenir explicitement sa décomposition en éléments
simples et modulo des efforts potentiellement conséquents ! Commençons par illustrer cette affirmation sur un exemple.

Exemple 32
ˆ 1{2

0

t5

t4 ´ 1
dt “

1

8
`

1

4
ln

3

5
.

✎ En pratique ✎ Primitivation d’une fraction rationnelle F réelle
Une fraction rationnelle réelle F peut-être primitivée en suivant la démarche suivante :

1. Déterminer la décomposition en élément simple de F dans RpXq.
2. La partie entière se primitive facilement.

3. Les termes en
1

px ´ λqα
se primitivent en

1

p1 ´ αqpx ´ λqα´1
, si α ‰ 1, ou en ln|x ´ λ| sinon.

4. Les termes en
dx ` e

pax2 ` bx ` cqα
(avec ax2 ` bx ` c irréductible) se décompose en une combinaison linéaire d’un

terme du type
u1

uα
(primitvable de façon similaire au point précédent) et d’un terme de la forme

1

pax2 ` bx ` cqα
.

Pour traiter ce dernier terme, on commence par mettre le dénominateur sous forme canonique et factoriser par le

terme constant pour se ramener à
1

ppαx ` βq2 ` 1qα
puis on procède au changement de variable affine y “ αx`β

pour se ramener à
1

py2 ` 1q
α . Deux options sont alors envisageables :

• Procéder par réduction de l’exposant α par des intégrations par parties successives :
ˆ

dy

py2 ` 1q
α “

ˆ
dy

py2 ` 1q
α´1 ´

ˆ
y2

py2 ` 1q
α dy

et on passe de l’exposant α à α ´ 1 dans la seconde intégrale par une IPP en primitivant
y

py2 ` 1q
α et

dérivant y.
• Procéder au changement de variable x “ Arctanpyq, réexprimer l’intégrande comme puissance d’un cosinus,

puis linéariser.
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Compétences à acquérir
• Décomposer en éléments simples une fraction rationnelle explicite : exercices 6.
• Décomposer en éléments simples une fraction rationnelle générique : exercices 5, 7 et 8.
• Application à des calculs de somme : exercices 14, 9 et 11.
• Application à des calculs de primitive/intégrale : 18 à 20.

Quelques résultats classiques :
• Dérivation des fractions rationnelles (exercice 3).
• Théorème de Gauss-Lucas (exercice 9).
• Caractérisation des polynômes à coefficients complexes laissant stable U (exercice 13).

A Annexe
Construction du corps des fractions rationnelles (théorème 1).

Existence de l’ensemble KpXq. Notons K l’ensemble KrXs ˆ pKrXszt0uq et définissons sur celui-ci la relation binaire
„ de la façon suivante

pP,Qq „ pS, T q ðñ PT “ SQ,

pour tout pP,Qq, pS, T q P K. Montrons alors que „ est une relation d’équivalence :
• Réflexivité. Pour tout pP,Qq P K, PQ “ PQ, soit pP,Qq „ pP,Qq ;
• Transitivité. Pour tous pP,Qq, pS, T q, pU, V q P K, si pP,Qq „ pS, T q et pS, T q „ pU, V q, alors PT “ SQ et SV “ UT ,

d’où PTV “ SQV “ UTQ. Or T ‰ 0 et KrXs est intègre, ainsi PV “ UQ, soit pP,Qq „ pU, V q.
• Symétrie. Pour tout pP,Qq, pS, T q P K, si pP,Qq „ pS, T q, alors PT “ SQ, soit SQ “ PT et donc pS, T q „ pP,Qq.

On définit alors KpXq comme l’ensemble quotient K{ „ de K par „ et, pour tout pP,Qq P K, on note
P

Q
la classe d’équivalence

de l’élément pP,Qq. L’ensemble ainsi construit vérifie les points (i) à (iii) de la définition 1. La notation fractionnaire n’est donc
qu’une notation pour représenter une classe d’équivalence de l’ensemble quotient.
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10 Corps des fractions rationnelles

Structure de corps. Soit P,Q, S, T, U, V P KrXs avec Q,T, V non nuls.
• Légitimité de la définition de ` et ˆ. Les couples pP,Qq et pS, T q sont des représentants particuliers des fractions

rationnelles
P

Q
et

S

T
, qui rappelons le sont des classes d’équivalence de l’ensemble quotient KpXq. Il s’agit donc de s’assurer

que les définitions de l’addition et de la multiplication de deux fractions rationnelles sont indépendantes de ces choix de

représentants. Donnons-nous pour cela rP , rQ, rS, rT P KrXs avec rQ et rT non nuls et tels que
P

Q
“

rP

rQ
et

S

T
“

rS

rT
et vérifions

que

PT ` SQ

QT
“

rP rT ` rS rQ

rQ rT
et

PS

QT
“

rP rS

rQ rT
soit

pPT ` SQq rQ rT “

´

rP rT ` rS rQ
¯

QT et PS rQ rT “ rP rSQT,

ce qui est vrai car P rQ “ rPQ et S rT “ rST .
• Commutativité de `. Elle découle de la commutativité de ` et ˆ dans KrXs :

P

Q
`

S

T
“

PT ` SQ

QT
“

SQ ` PT

TQ
“

S

T
`

P

Q
.

• Associativité de `.
ˆ

P

Q
`

S

T

˙

`
U

V
“

PT ` SQ

QT
`

U

V
“

pPT ` SQqV ` UpQT q

pQT qV
“

PTV ` SQV ` UQT

QTV

et
P

Q
`

ˆ

S

T
`

U

V

˙

“
P

Q
`

SV ` UT

TV
“

P pTV q ` pSV ` UT qQ

QpTV q
“

PTV ` SQV ` UQT

QTV
.

• Neutralité de
0

1
pour `.

P

Q
`

0

1
“

P ˆ 1 ` 0 ˆ Q

Q ˆ 1
“

P

Q
, d’où le résultat par commutativité `.

• Inverse pour `.
P

Q
`

´P

Q
“

PQ ` p´P qQ

Q2
“

0

Q2
“ 0, d’où le résultat par commutativité.

À ce stade, pKpXq,`q est un groupe.

• Commutativité de ˆ. Elle découle de la commutativité de ˆ dans KrXs :
P

Q
ˆ

S

T
“

PS

QT
“

SP

TQ
“

S

T
ˆ

P

Q
.

• Associativité de ˆ. Elle découle de l’associativité de ˆ dans KrXs :
ˆ

P

Q
ˆ

S

T

˙

ˆ
U

V
“

PS

QT
ˆ

U

V
“

pPSqU

pQT qV
“

P pSUq

QpTV q
“

P

Q
ˆ

ˆ

S

T
ˆ

U

V

˙

.

• Neutralité de
1

1
pour ˆ.

P

Q
ˆ

1

1
“

P ˆ 1

Q ˆ 1
“

P

Q
, d’où le résultat par commutativité de ˆ.

• Distributivité de ˆ sur `.
ˆ

P

Q
`

S

T

˙

ˆ
U

V
“

PT ` SQ

QT
ˆ

U

V
“

pPT ` SQqU

QTV
“

PTU ` SQU

QTV
et

P

Q
ˆ

U

V
`

S

T
ˆ

U

V
“

PU

QV
`

SU

TV
“

PUTV ` SUQV

QTV 2
“

PUT ` SUQ

QTV
,

d’où le résultat par commutativité de ˆ.

À ce stade, pKpXq,`,ˆq est un anneau commutatif.

• Inverse pour ˆ. Si P ‰ 0, alors
P

Q
ˆ

Q

P
“

PQ

QP
“

1

1
, ainsi, par commutativité de ˆ,

P

Q
est inversible, d’inverse

Q

P
.

En somme, pKpXq,`,ˆq est un corps.

Plongement de KrXs dans KpXq. Notons φ l’application P ÞÝÑ P
1

de KrXs dans KpXq. On a bien sûr φp1q “ 1 et,
pour tous P,Q P KrXs,

φpP ` Qq “
P ` Q

1
“

P

1
`

Q

1
“ φpP q ` φpQq et φpPQq “

PQ

1
“

P

1
ˆ

Q

1
“ φpP qφpQq

ainsi φ est un morphisme d’anneaux. Par ailleurs, pour tout P P KrXs, on a les équivalences

φpP q “ 0 ðñ
P

1
“ 0 “

0

1
ðñ P “ 0,

ainsi Kerφ “ t0u et φ est injectif. Par conséquent, l’image φpKrXsq de l’anneau KrXs par le morphisme φ est un sous-anneau
de KpXq isomorphe à KrXs, ce qui légitime l’identification de KrXs comme sous-anneau de KpXq.
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