18 | Corps des fractions rationnelles

Dans I’ensemble de ce chapitre, K désigne 'un des corps R ou C .

Construction du corps des fractions rationnelles

Le caractére intégre de I'anneau K[X] va nous permettre de construire son corps des fractions* vis-a-vis duquel il
s’identifiera & un sous-anneau. On notera ’analogie totale avec le corps des rationnels Q qui n’est rien d’autre que le
corps des fractions de I’anneau intégre Z des entiers relatifs.

—— Définition-théoréme 1 — Corps des fractions rationnelles

Définition. On admet Pexistence d’un ensemble, noté K(X), satisfaisant les trois assertions suivantes.
. P
(i) A tout couple (P, Q) € K[X]? avec @ non nul, on peut associer un unique élément de K(X) noté o

P
(i) Tout élément F' de K(X) peut étre écrit sous la forme 0 ot (P, Q) € K[X]? avec Q non nul. Un tel couple

(P, Q) est appelé un représentant de F'. P

(iii) Pour tous (P,Q), (S,T) € K[X]? avec Q et T non nuls, 0 = % <~ PT =5Q.

Les éléments de K(X) sont appelés les fractions rationnelles a coefficients dans K.

Structure de corps. L’ensemble K(X) est muni d’une structure de corps via les deux lois de composition internes
+ et x définies par

P S PTr+5Q rPp_ S PS
V(P S,T) e K|X K[X\{0 —+—=——— et —X_—=—
(P.Q).(ST) eKIX] x KIXNOD. G+7=—gr" o 5X3=gp

ces définitions étant légitimes car indépendantes du choix des représentants (P, Q) et (S,T') des fractions ration-

S

11 P t
nelles — et —.
Q T

P
Les polynémes sont des fractions rationnelles. L’application P — — est un morphisme injectif d’anneaux

de K[X] dans K(X). Cette injection permet d’identifier tout polynéme P € K[X] a la fraction rationnelle P/1
et cette identification fait de K[X] un sous-anneau de K(X).

Démonstration. Admis, conformément au programme. On trouvera le détail d’une construction de K(X) a Pannexe A. [ |

1 X+1
Exemple 2 Dans R(X), les fractions rationnelles — et i

X m sont égales, puisque 1 x X (X +1) = X x (X +1).

P\ !
% En pratique % Pour tous P, Q € K[X] avec @ non nul, si P est non nul, alors <Q> ==

P
Exemple 3 — Conjuguée d’une fraction rationnelle La fraction rationnelle 5 ne dépend pas du choix du représentant

(P, Q) de la fraction rationnelle F' € C(X), on I'appelle la fraction rationnelle conjuguée de F et on la note F. On
déduit alors immédiatement des propriétés sur les polynémes que

VE,GeC(X), F+G=F+G e FG=FQG.

En effet, soit (P,Q) et (S,T) deux représentants de F', on a donc PT = SQ, ce qui entraine PT = S Q.

t. L’ensemble des définitions et résultats de la premiére partie de ce chapitre restent valables sur un corps K quelconque.

1. En théorie des anneaux, le corps des fractions d’un anneau intégre A est le plus petit corps commutatif (& isomorphisme prés)
contenant A. Sa construction est une généralisation & un anneau intégre de la construction du corps des rationnels Q & partir de I’anneau
des entiers relatifs Z. La construction donnée a 'annexe A reste effectivement valable pour un anneau A intégre quelconque.
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Corps des fractions rationnelles

Forme irréductible d’une fraction rationnelle

La notion de forme irréductible pour une fraction rationnelle est ’analogue de celle déja connue pour les nombres
rationnels.

—— Définition 4 — Représentant irréductible d’une fraction rationnelle

e On appelle représentant irréductible d’une fraction rationnelle F' tout représentant (P, Q) de F tel que les
polyndémes P et () soient premiers entre eux.

e On appelle représentant irréductible unitaire d’une fraction rationnelle F' tout représentant irréductible (P, Q)
de F tel que le polynéme @) soit unitaire.

—— Théoréme 5 — Existence et « unicité » de la forme irréductible
(i) Si P/Q est une forme irréductible d’une fraction rationnelle S/T, alors

IReK[X], S=RP et T =RQ.
(i) Si P1/Q1 et Py/Qy sont deux formes irréductibles d’une méme fraction rationnelle, alors
HAGK*, PQZ/\Pl et QQZAQl.

(iii) Toute fraction rationnelle admet un et un seul représentant irréductible unitaire.

Démonstration. g
(i) Par hypothese 0 =7 soit PT = S@Q. Ainsi Q divise PT, or P et (Q sont premiers entre eux, par conséquent @ divise T’
et il existe donc R € K[X] tel que T' = QR, d’ou
PT _ PQR

(ii) D’aprés (i), Q1 et Q2 sont associés, or ils sont non nuls, ainsi le polynéme R précédent est une constante non nulle.
(iii) L’unicité est clair d’aprés le point précédent. Pour I'existence, considérons un représentant quelconque (P, @) : on com-
mence par diviser P et @ par leur PGCD, puis on divise le numérateur et le dénominateur obtenu par le coefficient

dominant de ce dernier. -

Exemple 6

X2+ X -2 X2

X?12x -3 X +3
Eneffet, (X2 + X —2)A(X?2+2X —-3) = (X - D)(X +2)A((X —1)(X +3)) = X — 1.

e La forme irréductible unitaire d’un polynéme P est P/1. E particulier, 0/1 est la forme irréductible unitaire de
la fraction rationnelle nulle.

e La forme irréductible unitaire de

Exemple 7 Pour tout F e C(X), F eR(X) si et seulement si F' = F.

Degré et partie entiére d’une fraction rationnelle

Définition-théoréme 8 — Degré d’une fraction rationelle

Soit F' = P/Q € K(X). La quantité deg P — deg ), qui appartient & Z u {—o0} et ne dépend pas du représentant
(P, Q) choisi pour la fraction F', est appelée le degré de F' et est aussi notée deg F'.

Démonstration. Soit (P, Q) et (S,T) deux représentants de F.
e Puisque Q # 0, deg @ € N et la quantité deg P — deg @ est bien définie et & valeurs dans Z u {—oo}.
e Par hypothése, PT = SQ dans K[X], ainsi
deg P + deg T = deg(PT) = deg(QS) = deg S + deg Q
et puisque deg @ et degT sont des entiers, il vient deg P — deg @ = deg S — degT. "
Remarque 9 Un polynome P s’identifie a la fraction rationnelle P/1 dont le degré est deg P — deg1 = deg P. Ainsi
la définition du degré sur K(X) prolonge celle du degré défini sur K[X], ce qui légitime cette notation commune.
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Exemple 10
e A D’instar des polynomes, le degré d’une fraction rationnelle F' vaut —oo si et seulement si F est nulle.
14X2% -3

o den Fr s gs ) - des(14X7 - 3) - deg(1X° 4 8X7) = -3

On dispose alors de propriétés identiques a celles connues pour les polynomes.

—— Théoréme 11 — Propriété du degré
Soit F' et G deux fractions rationnelles & coefficients dans K.

(i) deg(F + G) < max{deg F,deg G}. (i) deg(FG) = degF + degG.

Démonstration. ... [ |

Définition-théoréme 12 — Partie entiére d’une fraction rationnelle
Toute fraction rationnelle F' s’écrit de fagon unique comme la somme d’un polynoéme, appelé la partie entiére de
F, et d’une fraction rationnelle de degré strictement négatif.

Démonstration. ... m

% En pratique ®  La partie entiére d’une fraction rationnelle F' = P/@Q s’obtient comme le quotient de la division
euclidienne du numérateur P par le dénominateur Q). En particulier, si deg F' > 0, alors le degré de la partie entiére
de F est deg F.

Exemple 13
e La partie entiére d’une fraction rationnelle de degré strictement négatif est nulle.

e La partie entiére d’une fraction rationnelle de degré nul est le polynéme constant égal au quotient du coefficient
dominant du numérateur par celui du dénominateur.
X° X° X3 +4X2+3X +2
e La partie enticre de ——————— est X —2 et ———————=X-2+ 5
(X2+X+1) (X2+X+1) (X2+X+1)

En effet, la division euclidienne de X® par (X2 + X + 1) est X° = (X —2)(X? + X + 1) + X® + 4X2 + 3X + 2.

e La partie entiére d’une fraction rationnelle paire (resp. impaire) est paire (resp. impaire).
. , ) . X5+ X34+ X
¢ La partie entiere de la fraction rationnelle F' = —————— est X.
(X2+1)

En effet, la partie entiére de F est de la forme X + a, or elle est impaire, & I'instar de F', ce qui impose a = 0.

Zéros, poles et fonctions rationnelles

—— Définition-théoréme 14 — Zéro, pole, multiplicité
Soit F' une fraction rationnelle a coefficients dans K de FORME IRREDUCTIBLE P/Q).
e On appelle zéro de F (resp. pole de F') toute racine du numérateur P (resp. du dénominateur Q).

e Lorsque F est NON NULLE, lordre de multiplicité d’un zéro (resp. pdle) o de F est l'ordre de multiplicité de
« en tant que racine de P (resp. Q).

P . . .. - . . AP . .
Démonstration. D’aprés le point (ii) du théoréme 5, les formes irréductibles de F' sont les 20 avec A € K*, ainsi les notions

introduites ne dépendent pas du représentant irréductible choisi pour F'. |

¥ ArTENTION ! ¥ Les zéros et les poles d’une fraction rationnelle ne peuvent étre obtenus qu’a partir d’'une de
ses formes irréductibles.

X3 -1 oot 1 i L sle. oui 7 X2+ X +1
—5 - N'adme 11 comme zero, n1 comme poile uisque =
X7 1 ; pole, puisq X11

et, sous cette forme irréductible, les zéros de F sont j et j, et I'unique pole de F est —1 (chacun de multiplicité 1).

Exemple 15 La fraction rationnelle F' =
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Remarque 16 Un élément A de K ne peut pas étre a la fois zéro et pole d’une fraction rationnelle F'. Dans le cas
contraire, avec F' = P/Q une forme irréductible, on aurait P(\) = Q(\) = 0, et les polyndomes P et @ seraient donc
divisibles par X — ), ce qui contredirait le caractére irréductible de 1’écriture P/Q.

—— Définition-théoréme 17 — Fonction rationnelle
Soit F une fraction rationnelle & coefficients dans K, de forme IRREDUCTIBLE P/Q). Notons A I’ensemble des

P
poles de F (i.e. les racines de @ dans K). Pour tout « € K\A, on définit F(«) = QEZ;

K\A par z — F(z) est appelée la fonction rationnelle associée a la fraction rationnelle F.

, et la fonction définie sur

Démonstration. Idem définition-théoréme 14. [ ]
. . N . . X? —4X +3 o
Exemple 18 La fonction rationnelle f associée & la fraction rationnelle —xz_1 est définie sur R\{—1} par
-3
x) = .
/(@) z+1

Remarque 19

e Si S/T est une écriture quelconque (non nécessairement irréductible) d’une fraction rationnelle F' et si T'(«r) # 0,
S(a)

T(a)
o Soit F,G € K(X) et \,u € K. Si @ € K n’est un pole ni de F ni de G, alors « n’est pole ni de la combinaison
linéaire A\F' 4+ uG ni du produit F'G et

alors « n’est pas un pole de F' et on a F(a) =

(AF + uG)(a) = AF(a) + uG(a) et (FG)(a) = F(a)G(a).

Décomposition en éléments simples sur C et sur R

Il est immédiat de réduire une somme de fractions rationnelles au méme dénominateur

P 1 X*(X+1)  X+1 X X+ X°+1

X X+1 XX+1) X(X+1) X(X+1) X(X +1)
Cette section présente les outils pour réaliser 'opération inverse consistant & décomposer une fraction rationnelle
« compliquée » en une somme de morceaux « simples ». Commengons par illustrer ce processus sur l’exemple suivant.

X8 +8X +3
(X —1)3(X —2)(X2+1)*
e On commence par calculer la partie entiére de F : le quotient de la division euclidienne de X® 4+ 8X + 3 par
(X — 1)3(X —2)(X2 4+ 1) est 1, ainsi

Exemple introductif. On cherche a décomposer sur R la fraction rationnelle F' =

deg<0

~

N .
(X —-13X-2)(X%2+1)

e On détermine la factorisation irréductible sur R du dénominateur : ici (X — 1)3(X — 2) (X z 4 1)2 est déja sous
forme irréductible, puisque X? + 1 est sans racine réelle.

e On peut alors montrer qu'il existe des réels a,b, c,d, e, f,g et h tels que
a b c d eX+ f gX +h
F=1
Toxor T o Txo1 T x 2 Tz XA

et cette écriture correspond & la décomposition en éléments simples de F'.

A + Gm—1 + + ai
(X —am (X —nm T X D

x Chaque facteur (X — )™ du dénominateur est associé & une somme

de m termes, avec aq,...,a;, € R.

x Chaque facteur (X2 +aX +b)™ du dénominateur, pour lequel X2+ aX +b est sans racine réelle, est associé

N cm X +d ClX +d1
A une somme T u + ...+ ——————— de m termes, avec ¢1,...,Cn,d1,...,dyn € R.

(X2+aX +b0)™  X?24aX+Db
Il reste alors a apprendre & calculer explicitement les coefficients a, b, ¢, d, e, f, g et h.

Une application majeure de la décomposition en éléments simples des fractions rationnelles se concrétisera dans le
calcul des primitives de telles fonctions (cf. section 2.3).
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228 Existence et unicité

Théoréme 20 — Décomposition en éléments simples sur C

Soit F' € C(X) de partie entiére E et de poles distincts Aq, .. ., A, de multiplicités respectives my, ..., m,. Il existe
alors une et une seule famille (a; 1) 1<i<r de nombres complexes telle que
a; k
Fep+y) Z
i=1 k= 1

Partie polaire
associée au pdle \;

Une telle écriture de F' est appelée sa décomposition en éléments simples sur C.

Démonstration. Admis conformément au programme. |

Exemple 21 Dans les exemples suivants, ou I'on fera apparaitre la partie entiére méme lorsqu’elle est nulle, les fractions
proposées sont & coefficients réels et donc égales & leur conjuguée. Par conséquent, par unicité de la décomposition
en éléments simples, certains coefficients sont égaux a conjugaison prés tandis que d’autres sont réels (cf. paragraphe
2.2).
. X3 4+4X%2+1 a a
1. 1l existe a € C tel que X211 _X+4+X—i+X+i'
2. Il existe a,b,c,d € R et e € C tels que

X4+ X +1 _0+g+ b N c N d N e N €
X(X —-5)3(X2+4) X (X-5)3 (X-5?2 X-5 X-2 X+2
1 a b c b c
3. Il existe a € R et b, c € C tels que =0+ =+ ~— + -+ = + =
d X(X2+ X +1) X (X-j)p X-j (X-j?2 X-—j

—— Théoréme 22 — Décomposition en éléments simples sur R

P
Soit F' = — € R(X) sous FORME IRREDUCTIBLE de partie entiére E. On considére la factorisation irréductible

T S
. n; . ” < .
de@QsurR: Q= aH(X —A)™ x 1_[(X2 +b;X +c¢;) 7 (notations du théoréme 59 du chapitre 17).
i=1 j=1
Il existe alors des familles uniques (a; ) 1<i<r , (Ujk) 1<j<s €t (Ujk) 1<j<s de nombres réels telles que
1<k<m; 1<k<n; 1<k<ny
Eléments simples B
de premiére espéce Eléments simples de seconde espéce
~ s n; N
Pepe Y Yt 3 e
’lel j=1k=1 X2+bX+CJ)

Partie polaire
associée au pdle \;

Une telle écriture de F' est appelée sa décomposition en éléments simples sur R.

Démonstration. Admis conformément au programme. ]

Exemple 23 On reprend les exemples donnés a I’exemple 21.

X3 +4X2 41 X +V
1. Tl existe a/, b’ € R tel que ;_(2—5:)("'4"'%'

2. Nl existe o/, b', ¢, d',€/, f' e R
X'+ X+1 a' b d d  eX+f

XX 52+ d) T X T X T T X5 X244

1 VX + ¢ dX +¢€
3. Hexiste o/, b, ¢, d, e’ € R tels que 2=0+i+ te 5+ =5 te )
X(X?+X+1) X (X2+X+1)?% X?+X+1
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Théoréme 24 — Décomposition en éléments simples de P’/P
Soit P € K[X] un polynéme non constant et scindé de racines Aj,..., . dans K de multiplicités respectives
mi, ..., M, alors
P my;
P ; X =N
Démonstration. ... [ ]

Méthodes pratiques d’obtention des coefficients

P
Soit F' = — une fraction rationnelle & coefficients complexes de partie entiére E et de poles distincts Aq,..., A, de
multiplicités respectives myq, ..., m,. Sa décomposition en éléments simples sur C est de la forme
r o om; ik
Fopr Y Y 0k
k
—1im (X = N)
Partie entiére. La partie entiére FE s’obtient comme le quotient de la division euclidienne de P par Q.
Si la fraction est a coefficients réels... et si A est un pole non réel de F' de multiplicité m, alors A est aussi un

pole de F' d’ordre m et les coefficients des parties polaires associées & A et A sont conjugués deux & deux. Par ailleurs,
les coefficients des parties polaires associées aux poles réels sont réels.

En effet, puisque le dénominateur @ est a coefficients réels, si A est une racine non réelle de @, alors A I'est aussi avec la

m
méme multiplicité. Ecrivons F sous la forme F = Z Gk + G, ou A\ n’est pas un poéle de la fraction rationnelle G, alors
2 =N"

o m m o
F=F=) —* __.@
,;(X—A)’“

m
~ — A . . . ~ a
et A n’est pas un podle de G. Ainsi, la partie polaire associée au pole \ est Z k’L o
=1 (X —

éléments simples. Autrement dit, a, v = ax,x et, en particulier lorsque X est réel, on obtient ar x = @k, x.

par unicité de la décomposition en

Si la fraction est paire ou impaire... et si A est un poéle de F' d’ordre m, alors —A\ est aussi un pole de F' de méme
multiplicité m. Il découle alors de la comparaison des décompositions en éléments simples de F/(X) et F(—X) = £F(X)
des relations entre les coefficients des parties polaires associées aux poOles A et —A.

4X
Exemple 25 La fraction F' = W se décompose en éléments simples sous la forme
a b c d

=
X " Xx-1 T x0T X1

(la partie entiére est nulle) et

—a N —b N —c N -d —a N b N —c N d
(=X -1)2 0 X1 (X412 —X+1 (X+1)?2 X+1 (X-12 X-1

L’unicité de la décomposition en éléments simples donne alors ¢ = —a et d = b.

Si la fraction est de degré strictement négatif... alors la fonction rationnelle x — xzF'(z) définie sur une partie de

R a une limite finie en +00. Il en découle une relations entre les coefficients des termes en de la décomposition

X=X\
en éléments simples de F'.

Exemple 25 — (suite) Puisque deg F' = —3 < 0, la limite de z — xF(z) en +o0 donne

ar bx cr dx
= li F(z)= 1 =b+d
0 et (z) wﬂlr}rloo<(a:—1)2+x—1+(x—|—1)2+a:+1) té

ce qui combiné & d = b donne b =d = 0.
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Multiplication par (X — A\)™ puis évaluation en X (élément simple de premiére espéce). Si A est un pole de

F' de multiplicité m, le coefficient a,, du terme de la partie polaire de F' associée au pole \ s’obtient en

__Om
X —=xm
évaluant en X 'expression (X — A)"™F, ou la multiplication de F' par (X — A\)™ permet d’« effacer » le pole .

Exemple 25 — (suite et fin) L’évaluation de (X — 1)2F en 1 donne

4X 4
=[(X - 1)?F](1) = 1) = =1
a=|( VEI) [(X+1)2]() (1+1)2

E d F L !

n somme, on a donc F' = — :

’ (X-1)2 (X+1)2

S’il ne reste qu’'un ou deux coefficients a calculer... on peut évaluer F' en une ou deux valeurs simples, qui ne
sont pas des poles de F'.
Bilan Pour déterminer les coefficients de la décomposition en éléments simples d’une fraction rationnelle F', on

pourra, :
e obtenir des relations sur les coefficients si F est a coefficients réels (pour une décomposition sur C) ou paire/impaire ;
e si deg F' < 0, multiplier par X puis passer a la limite en +00;
o multiplier par (X — A\)™ puis évaluer en \;
e ¢évaluer en certains points.

Evidemment, une stratégie imparable, mais potentiellement fastidieuse, consiste & mettre les deux écritures de F' au
méme dénominateur et & identifier les coefficients des polynémes aux numérateurs.

Exemple 26 X+3 2 ! + !
X = — .
P (X+12(X+2) (X+12 X+1 ' X+2
Calcul des coefficients pour les éléments simples de seconde espéce. Si I'on cherche & déterminer la décompo-

sition en éléments simples sur R de F' € R(X), celle-ci est de la forme

F=FE+ Z 2 i,k Z Z Uj kX + V5

%
i ( T (X2 +0;X +¢y)

Les techniques précédentes restent valables pour la détermination de E et des coefficients a;j des élément simple

. uX +v .
de premiére espéce. Voyons comment procéder pour un terme de seconde espéce ———————. Par définition, le
(X2+0X +¢)
c
trindéme réel X2 4+ bX + c admet deux racines complexes conjuguées w et @ et, comme pour les éléments simples de

premiére espéce, on obtient une relation par évaluation :
uw+v=[(X?+bX + ¢)"F|(w)

qui permet de déduire les valeurs de u et v. Notons qu’en pratique il est inutile de calculer explicitement w. Il suffit
d’exploiter la relation w? = —bw — c.

1 1 2 2X -3

Exemple 2 = - '

Le théoréme qui suit est spécifique aux POLES SIMPLES et commode quand le dénominateur est donné sous forme
développée.

—— Théoréme 28 — Partie polaire associée a un pale simple

Soit F' = P/Q € C(X) sous forme IRREDUCTIBLE et A € C.
A . . . . P(A
Si A est un POLE SIMPLE de F', alors le coefficient a de la partie polaire associée est a = Q’((;)'
Démonstration. ... [ ]
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Exemple 29 Pour tout n € N*,

n Xfw

Remarque 30 — Généralisation du théoréme 28 (HP)  Soit F' = P/Q € C(X) sous forme irréductible et A € C.

n'P )

nP(A)
M)
pole

Si A est un pole d’ordre n de F', alors le coefficient a du terme de la partie polaire associée est a =

a
(X =)
Une fois déterminer ce terme, on peut le retrancher & F' pour obtenir une fraction rationnelle dont A sera un
d’ordre strictement inférieur a n et itérer cette démarche.

Pour terminer, observons que, lorsque les poéles NON REELS d’une fraction rationnelle a coefficients REELS sont
SIMPLES, on peut aisément obtenir la décomposition en éléments simples sur R a partir de celle sur C en regroupant
les parties polaires conjuguées.

1
Exemple 31 Pour tout n € N*, la décomposition en éléments simples de S e sur R est

X
1 _ 1 1 2 cos( kW)X_l
XQ"—I_Qn(X—l) (X+1 E = —2c05(k7r)X+1

Application au calcul de primitive/intégrale

Comme cela a été annoncé au début de cette section, plus aucun calcul de primitive de fractions rationnelles réelles
ne peut dorénavant nous résister — sous réserve d’étre capable d’obtenir explicitement sa décomposition en éléments
simples et modulo des efforts potentiellement conséquents! Commencons par illustrer cette affirmation sur un exemple.

1245 1
E le 32 — _dt=-
xemple /0 ra— 3

ln§

L1
175

% En pratique % Primitivation d’une fraction rationnelle F réelle
Une fraction rationnelle réelle F' peut-étre primitivée en suivant la démarche suivante :

1. Déterminer la décomposition en élément simple de F' dans R(X).

2. La partie entiére se primitive facilement.

1
3. Les termes en ———— se primitivent en ,8i a # 1, ou en In|x — A| sinon.
(@—ne P (I—a)(@— Nt o= A
dr +e 2 o . ., - o
4. Les termes en ————— (avec ax® + bz + ¢ irréductible) se décompose en une combinaison linéaire d’un

(az? + bx + )
!/
1

(az? + bz + )
Pour traiter ce dernier terme, on commence par mettre le dénominateur sous forme canonique et factoriser par le

((az+ B)2 4+ 1)«

. Deux options sont alors envisageables :

terme du type — (primitvable de fagon similaire au point précédent) et d’un terme de la forme
u

puis on procéde au changement de variable affine y = ax+

terme constant pour se ramener a

our se ramener & —————
P (y>+1)°

e Procéder par réduction de I’exposant a par des intégrations par parties successives :

/(yziyl)a ) / (y? jgi)‘”‘l _/(yQZfl)o‘ dy
y

et on passe de l'exposant o & o — 1 dans la seconde intégrale par une IPP en primitivant m et
Y

dérivant y.
e Procéder au changement de variable = Arctan(y), réexprimer l'intégrande comme puissance d’un cosinus,
puis linéariser.
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Compétences a acqueérir

e Décomposer en éléments simples une fraction rationnelle explicite : exercices 6.

e Décomposer en éléments simples une fraction rationnelle générique : exercices 5, 7 et 8.

Application & des calculs de somme : exercices 14, 9 et 11.

Application & des calculs de primitive/intégrale : 18 a 20.

Quelques résultats classiques :
e Dérivation des fractions rationnelles (exercice 3).
e Théoréme de Gauss-Lucas (exercice 9).

e Caractérisation des polyndmes a coefficients complexes laissant stable U (exercice 13).

Annexe

Construction du corps des fractions rationnelles (théoréme 1).

Existence de I'ensemble K(X). Notons K I'ensemble K[X] x (K[X]\{0}) et définissons sur celui-ci la relation binaire
~ de la facon suivante
(P,Q)~(5T) <= PT'=15Q,
pour tout (P, @), (S,T) € K. Montrons alors que ~ est une relation d’équivalence :
e Réflexivité. Pour tout (P, Q) € K, PQ = PQ, soit (P,Q) ~ (P,Q);

e Transitivité. Pour tous (P, Q),(S,T),(U,V) € K, si (P,Q) ~ (S,T) et (S,T) ~ (U,V), alors PT = SQ et SV = UT,
d’ou PTV = SQV =UTQ. Or T # 0 et K[X] est intégre, ainsi PV = UQ, soit (P,Q) ~ (U, V).

e Symétrie. Pour tout (P,Q),(S,T) e K, si (P,Q) ~ (S,T), alors PT = SQ, soit SQ = PT et donc (S,T) ~ (P, Q).
On définit alors K(X) comme I’ensemble quotient X/ ~ de K par ~ et, pour tout (P, Q) € K, on note g la classe d’équivalence

de I’élément (P, Q). L’ensemble ainsi construit vérifie les points (i) a (iii) de la définition 1. La notation fractionnaire n’est donc
qu’une notation pour représenter une classe d’équivalence de ’ensemble quotient.
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Structure de corps. Soit P,Q,S,T,U,V € K[X] avec Q, T,V non nuls.

Légitimité de la définition de + et x. Les couples (P, Q) et (S,T) sont des représentants particuliers des fractions
P S
rationnelles — et b qui rappelons le sont des classes d’équivalence de ’ensemble quotient K(X). Il s’agit donc de s’assurer

que les définitions de 'addition et de la multiplication de deux fractions rationnelles sont 1ndependantes de ces choix de
S

représentants. Donnons-nous pour cela 13, @ § Te K[X] avec Q et T non nuls et tels que et T =

5
= — et vérifions
T

Qi o

a:
que
PT+5Q _PT+5Q . PS_

QT QT QT

@e‘ 3
e W

soit

(PT + SQ)OT = (ﬁf n §@) Qr et  PSOT = P3QT,
ce qui est vrai car P@ = IBQ et ST = ST.
Commutativité de +. Elle découle de la commutativité de + et x dans K[X] :

P,S_Pr+SQ _SQ+PT _5 P

Q' T Qr ~ TQ T Q@
(P 5)+£7PT+SQ U (PT+SQV +U(QT) _PTV +SQV +UQT
|4

Associativité de +. 6 + T oT + = v = oDV = TV

P (S U) P  SV+UT PIV)+(SV+UT)Q PTV +SQV +UQT

tot\r Tt ot v QTV) = oTV

Q \rt"V

Neutralité de % pour +. 0_Px1+0x@Q L

P

6 + 1= W Q d’ou le résultat par commutativité +.
pPp —-P P P 0

Inverse pour +. -+ — = M = — =0, d’out le résultat par commutativité.

QR @ Q? @?

A ce stade, (K(X),+) est un groupe.

Commutativité de x. Elle découle de la commutativité de x dans K[X] :
Associativité de x. Elle découle de l'associativité de x dans K[X] :

<5X§) U_PS U _(PSU _ P(SU)
Q T

P (5 U
VIQTV T @DV QIV) Q (T V>'

,_.
Y

P x .

= = —, d’ou le résultat par commutativité de x.

x1 @

PT + 5Q " U _(PT+SQU _ PTU +SQU
QT Vo QTV N QTV

X
el B

1
Neutralité de 1 pour x.

T, U
Distributivité de x sur +. X V= et

/_\Q\“U
Q|
~—— O

(Bav]
| <

PU  SU _ PUTV +SUQV _ PUT +SUQ

ov TV = oTV? oTV

S
T
X +§><g—
Q v T "V

d’ou le résultat par commutativité de x.

A ce stade, (K(X),+, x) est un annecau commutatif

Q_ PQ

. 1 .. .. P . . .
Inverse pour x. Si P #0, alors — X = = —= , ainsi, par commutativité de x, a est inversible, d’inverse %

Q P QP 1

En somme, (K(X),+, x) est un corps.

Plongement de K[X] dans K(X). Notons ¢ I'application P — £ de K[X] dans K(X). On a bien str ¢(1) = 1 et,
pour tous P, Q € K[X],

PO D 2 umre@ @ o =T2=%

e(P+Q) = T

ainsi ¢ est un morphisme d’anneaux. Par ailleurs, pour tout P € K[X], on a les équivalences

p(P)=0 <<= —=0=- < P=0,

ainsi Ker ¢ = {0} et ¢ est injectif. Par conséquent, I'image ¢(K[X]) de ’anneau K[X | par le morphisme ¢ est un sous-anneau
de K(X) isomorphe a K[X], ce qui légitime 'identification de K[X] comme sous-anneau de K(X).
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