
17 Arithmétique dans l’anneau KrXs

Dans l’ensemble de ce chapitre, K désigne l’un des corps R ou C. †

1 Divisibilité dans KrXs

Les notions et résultats de cette section sont analogues à ceux que vous connaissez concernant les entiers relatifs.

1.1 Relation de divisibilité

Soit A et B deux polynômes à coefficients dans K.
• On dit que A divise B, ou que A est un diviseur de B, ou que B est divisible par A ou encore que B est un

multiple de A lorsqu’il existe un polynôme C P KrXs tel que B “ AC. Cette relation se note A | B.
• Les polynômes A et B sont dits associés lorsque A | B et B | A.

Définition 1 – Divisibilité, diviseur, multiple

Exemple 2
• Le polynôme X2 ` X ´ 6 est divisible par X ` 3 car X2 ` X ´ 6 “ pX ` 3qpX ´ 2q.
• Le polynôme nul est divisible par tous les polynômes mais il ne divise que lui-même.
• Les polynômes constants et non nuls divisent tous les polynômes.
• Si A | B avec B non nul, alors degB ě degA.

En effet, il existe C P KrXszt0u tel que B “ AC, dont il découle degB “ degA ` degC ě degA.

Soit A,B,C,D P KrXs

(i) Caractérisation des polynômes associés. A | B et B | A ðñ Dλ P K˚, A “ λB.
(ii) Réflexivité et transitivité. La relation de divisibilité | est réflexive et transitive sur KrXs.
(iii) Combinaison linéaire. pD | A et D | Bq ùñ p@U, V P KrXs, D | pAU ` BV qq.
(iv) Produit. pA | B et C | Dq ùñ AC | BD. En particulier, A | B ùñ

`

@k P N, Ak | Bk
˘

.

Théorème 3 – Propriétés de la relation de divisibilité

Démonstration. ... ■

Remarque 4 La relation de divisibilité restreinte à l’ensemble des polynômes unitaires est une relation d’ordre.

1.2 Division euclidienne

Soit A,B P KrXs avec B non nul. Il existe un unique couple de polynômes pQ,Rq P KrXs2 pour lequel

A “ BQ ` R et degR ă degB.

On appelle A le dividende de la division euclidienne de A par B, B le diviseur, Q le quotient et R le reste.

Théorème 5 – Division euclidienne

Démonstration. ... ■

†. L’essentiel des résultats de ce chapitre énoncé pour le corps K reste valable pour un corps quelconque, à l’exception notable du
théorème 14, qui lui reste valable pour K un sous-corps de C.
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2 Arithmétique dans l’anneau KrXs

Remarque 6
• Le polynôme B divise A si et seulement si le reste de la division de A par B est nul.
• Soit A,B P RrXs avec B non nul. La propriété d’unicité du quotient et du reste de la division euclidienne permet

d’établir que B divise A dans RrXs si et seulement s’il divise A dans CrXs.

Exemple 7 La division euclidienne de 7X5 ` 4X4 ` 2X3 ´ X ` 5 par X2 ` 2 donne

7X5 ` 4X4 ` 2X3 ´ X ` 5 “
`

X2 ` 2
˘ `

7X3 ` 4X2 ´ 12X ´ 8
˘

looooooooooooooomooooooooooooooon

quotient

` 23X ` 21
loooomoooon

reste

.

En particulier, 7X5 ` 4X4 ` 2X3 ´ X ` 5 n’est pas divisible par X2 ` 2, puisque le reste de la division euclidienne
entre ces deux polynômes n’est pas nul.

2 Racines d’un polynôme

2.1 Racines

Soit λ P K et P P KrXs. Le reste de la division euclidienne de P par X ´ λ est P pλq.
Lemme 8 – Division euclidienne par X ´ λ

Démonstration. Par division euclidienne, il existe Q,R P KrXs tels que P “ pX ´ λqQ ` R et degR ă 1. Ainsi R est un
polynôme constant. Il suffit alors d’évaluer en λ : P pλq “ pλ ´ λqQpλq ` Rpλq “ R. ■

De ce résultat préliminaire découle la double définition suivante.

Soit P P KrXs et λ P K. On dit que λ est une racine de P (dans K) lorsque l’une des deux assertions équivalentes
suivantes est vérifiée :

(i) P pλq “ 0. (ii) P est divisible par X ´ λ.

Définition 9 – Racine

Attention ! La précision « racine dans K » n’est pas superflue. Par exemple, le polynôme X2 ` 1 n’a pas
de racine dans R, alors qu’il en a deux dans C, à savoir i et ´i.

✎ En pratique ✎ Via la notion de racine, on ramène souvent les problèmes de divisibilité à des problèmes d’éva-
luation, et vice versa.

Exemple 10 Pour tout n P N, le reste de la division euclidienne de Xn par X2 ´ 3X ` 2 vaut p2n ´ 1qX ´ p2n ´ 2q.

Le résultat suivant permet de circonscrire la recherche d’éventuelles racines « évidentes » d’un polynôme.

Exemple 11 – Racines rationnelles d’un polynôme à coefficients entiers Soit P “ anX
n ` . . . ` a1X ` a0 P ZrXs

et pp, qq P Z ˆ Z˚ avec p^q “ 1. Si le rationnel p{q est une racine de P , alors q | an et p | a0.

2.2 Multiplicité d’une racine

Soit P P KrXs non nul et λ P K.
• L’ensemble

␣

k P N
ˇ

ˇ pX ´ λqk divise P
(

possède un plus grand élément m appelé la multiplicité de λ dans P
(on dit aussi que λ est racine d’ordre m de P ), notée multpP, λq. En résumé, on dit souvent que m est la plus
grande puissance de X ´ λ qui divise P .

En particulier, dire que λ n’est pas une racine de P revient à dire que λ a pour multiplicité 0 dans P . Une
racine est dite simple lorsqu’elle est de multiplicité 1, double lorsqu’elle est de multiplicité 2, etc.

• Plus concrètement, l’entier m est caractérisé par chacune des deux assertions équivalentes suivantes :
(i) P est divisible par pX ´ λqm mais pas par pX ´ λqm`1.
(ii) Il existe Q P KrXs tel que P “ pX ´ λqmQ et Qpλq ‰ 0.

Définition-théorème 12 – Multiplicité d’une racine
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Démonstration. M “
␣

k P N
ˇ

ˇ pX ´ λq
k

| P
(

possède un plus grand élément, en tant que partie non vide et majorée de N. En
effet, M est non vide d’une part, puisqu’il contient 0, et est majoré par degP d’autre part (cf. exemple 2). ■

Remarque 13
• Si pX ´ λqm divise P , alors la multiplicité de λ dans P est supérieure ou égale à m.
• La multiplicité de λ dans P est inférieure ou égale au degré de P (cf. dernier point de l’exemple 2).
• La notion de multiplicité multpP, λq est analogue à la notion de valuation p-adique vppnq d’un entier non nul n.

La formule de Taylor polynomiale (théorème 34 du chapitre 14) va nous permettre de caractériser la multiplicité
d’une racine d’un polynôme par l’annulation des dérivées successives de ce polynôme en cette racine.

Soit P P KrXs non nul (avec K P tR,Cu), λ P K et m P N. Les assertions suivantes sont équivalentes :

(i) λ est de multiplicité m dans P ; (ii) @k P J0 ,m ´ 1K, P pkqpλq “ 0 et P pmqpλq ‰ 0.

Théorème 14 – Multiplicité et dérivées successives

Démonstration. ... ■

Exemple 15 La multiplicité de 1 dans P “ X4 ` 3X3 ´ 3X2 ´ 7X ` 6 est égale à 2.

Exemple 16 Le trinôme du second degré aX2 ` bX ` c, avec a, b, c P K et a ‰ 0, admet une racine double α si et
seulement si b2 ´ 4ac “ 0 et, le cas échéant, α “ ´ b

2a .

Remarque 17 Soit P P KrXs non nul, λ P K et m P N. Si λ est de multiplicité m dans P , alors λ est de multiplicité
m ´ r dans P prq, pour tout r P J0 ,mK.

Soit P P RrXs non nul – à coefficients réels donc – et λ P C. Alors λ et λ ont même multiplicité dans P .

Théorème 18 – Racines complexes d’un polynôme réel

Démonstration. P étant à coefficients réels, pour tout k P N, P pkq
`

λ
˘

“ P pkqpλq, la conclusion provient alors du théorème 14.
■

Exemple 19 À quelle condition nécessaire et suffisante sur n P N le polynôme X2 ` 1 divise-t-il Xn ` 1 ?

✎ En pratique ✎ Soit A,B P KrXs avec B ‰ 0. Nous avons déjà vu (cf. exemple 10) de quelle manière les racines
de B peuvent être exploitées lorsque l’on veut déterminer le reste de la division euclidienne de A par B. Le théorème
14 permet de prendre en compte leurs multiplicités respectives.

• Si B “ XpX ´ 1qpX ` 4q, la division euclidienne de A par B s’écrit A “ XpX ´ 1qpX ` 4qQ ` aX2 ` bX ` c,
avec Q P KrXs et a, b, c P R, et l’évaluation de cette égalité en les racines 0, 1 et ´4 fournit un système linéaire
d’inconnue a, b, c aisé à résoudre.

• Si B “ pX ´2q3pX `1q, la division euclidienne de A par B s’écrit A “ pX ´2q3pX `1qQ`aX3 ` bX2 ` cX `d,
avec Q P KrXs et a, b, c, d P R. On n’obtient hélas que deux équations en évaluant en 2 et ´1, mais on en obtient
deux supplémentaires en exploitant la multiplicité de 2 dans B. En effet, A1p2q “ 12a`4b`c et A2p2q “ 12a`2b.

Exemple 20 Pour tout n P N˚, le reste de la division euclidienne de Xn par XpX ´ 1q2 est pn´ 1qX2 ´ pn´ 2qX.

2.3 Nombre maximal de racines

Pour tous P,Q P KrXs non nuls et λ P K, multpPQ, λq “ multpP, λq ` multpQ,λq.
Lemme 21 – Additivité de la multiplicité d’une racine

Démonstration. ... ■

Remarque 22 Ce résultat d’additivité est analogue à celui obtenu pour les valuations p-adiques (théorème 53 du
chapitre 13).
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4 Arithmétique dans l’anneau KrXs

Soit P P KrXs non nul et λ1, . . . , λr P K des racines distinctes de P de multiplicités respectives m1, . . . ,mr.

Alors pX ´ λ1q
m1 ¨ ¨ ¨ pX ´ λrq

mr divise P . En particulier
r
ÿ

i“1

mi ď degP .

Théorème 23 – Factorisation « par les racines »

Démonstration. ... ■

Exemple 24 Le polynôme pX ´ 1q4X2pX ` 2q possède en tout trois racines distinctes (1 de multiplicité 4, 0 de
multiplicité 2 et ´2 de multiplicité 1). On dit en revanche qu’il possède sept racines comptées avec multiplicité,
puisque 4 ` 2 ` 1 “ 7.

✎ En pratique ✎ Le théorème précédent établit la caractérisation suivante de la divisibilité en termes de multiplicité
des racines :

r
ź

i“1

pX ´ λiq
mi | P ðñ @i P J1 , rK, multpP, λiq ě mi,

où les λi sont des éléments de K distincts, les mi des entiers naturels non nuls et P P KrXs un polynôme non nul.

Le corollaire suivant est souvent utilisé pour montrer qu’un polynôme est nul.

• Un polynôme non nul P possède au plus degP racines comptées avec multiplicité.
• En particulier, seul le polynôme nul possède une infinité de racines.

Corollaire 25 – Nombre maximal de racines comptées avec multiplicité

Un polynôme de degré n ne possède pas nécessairement n racines comptées avec multiplicité. Nous verrons à la
section 4 que c’est le cas si K “ C, mais pas si K “ R. Par exemple, X2 ` 1 est réel de degré 2, mais n’a pas de racine
réelle.

Ces diverses considérations sur le nombre maximal de racines d’un polynôme conduisent au résultat fondamental
suivant, décliné sous trois formes équivalentes.

1. Soit P P KnrXs. Si P admet strictement plus de n racines, alors P est nul.
2. Soit P,Q P KnrXs. Si P et Q coïncident en strictement plus de n valeurs distinctes, alors P “ Q.
3. Soit n P N˚, x1, . . . , xn des éléments distincts de K et y1, . . . , yn des éléments de K non nécessairement

distincts. Il existe au plus un polynôme P P Kn´1rXs tel que P pxiq “ yi, pour tout i P J1 , nK. Ainsi, sous
réserve d’existence, un polynôme de degré au plus n´ 1 est entièrement déterminé par ses valeurs en n points
distincts.

Théorème 26 – Rigidité des polynômes

Démonstration. Le point 1 est la contraposée du premier point du corollaire 25. Le point 2 est une conséquence de 1 appliqué
à P ´ Q. Le point 3 n’est qu’une reformulation de 2. ■

Remarque 27 Le dernier point du théorème précédent affirme l’unicité sous réserve d’existence d’un polynôme de
degré au plus n ´ 1 prenant des valeurs données en n points fixés. Il n’est pas difficile de construire explicitement un
tel polynôme, fournissant ainsi l’existence, comme nous le verrons à la section 3.

Exemple 28 Soit P P RrXs. On suppose que, pour tout n P N, P pnq “ n3 ´ n2 ` 1. Alors P “ X3 ´ X2 ` 1 et, a
fortiori, pour tout z P C, P pzq “ z3 ´ z2 ` 1.

✎ En pratique ✎ Comme l’illustre l’exemple précédent, le théorème 26 est un théorème de dés-évaluation.
Évaluer consiste à passer d’une égalité polynomiale à une égalité de nombres réels ou complexes. Dés-évaluer, c’est le
contraire : remonter d’une collection d’égalités de nombres à une égalité polynomiale. En d’autres termes, lorsqu’un
polynôme P est défini par certaines de ses valeurs, il est souvent fructueux d’interpréter cette hypothèse sur les valeurs
de P en termes de racines d’un nouveau polynôme Q. Quand ce polynôme Q a trop de racines, il est nécessairement
nul et on en tire souvent de précieux renseignement sur P .
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Exemple 29 – Polynômes de Tchebychev (un grand classique)
Pour tout n P N, il existe un unique polynôme Tn P RrXs tel que, pour tout θ P R, Tnpcos θq “ cospnθq.

Exemple 30 Il n’existe pas de polynôme P P RrXs tel que, pour tout n P N, P pnq “
3
?
n2 ` 1.

Exemple 31 Soit P P RrXs de degré n et tel que, pour tout k P J1 , n ` 1K, P pkq “
1

k
. Alors P p´1q “ n ` 1.

L’application P ÞÝÑ rP est un morphisme d’anneaux injectifs de KrXs dans KK, dont l’image correspond à
l’ensemble des fonctions polynomiales. Ainsi, deux polynômes sont égaux si et seulement si leurs fonctions poly-
nomiales associées le sont.

Théorème 32 – Identification polynôme/fonction polynomiale

Démonstration. Si rP “ rQ, alors ČP ´ Q est nulle sur K. Ainsi, tout élément de K est racine de P ´ Q, or K (R ou C) est infini,
P ´ Q possède donc une infinité de racine et est par conséquent nul. ■

2.4 Polynômes scindés et relations entre coefficients et racines

Un polynôme P P KrXs est dit scindé (sur K) lorsqu’il n’est pas constant et possède exactement degP racines

(dans K) comptées avec multiplicité, ce qui équivaut à dire que P est de la forme α
r
ź

i“1

pX ´ λiq
mi , où λ1, . . . , λr

sont les racines distinctes de P dans K, de multiplicités respectives m1, . . . ,mr, et où α est son coefficient
dominant.

Définition-théorème 33 – Polynôme scindé

Démonstration. Si P est scindé sur K, alors
r
ź

i“1

pX ´ λiq
mi divise P (théorème 23). Ainsi P “ Q

r
ź

i“1

pX ´ λiq
mi , avec Q P KrXs.

Or degQ “ degP ´ deg

˜

r
ź

i“1

pX ´ λiq
mi

¸

“ 0, ainsi Q P K et, comme
r
ź

i“1

pX ´ λiq
mi est unitaire, Q est égal au coefficient

dominant de P . ■

Attention ! La précision « scindé sur K » n’est pas superflue puisqu’un polynôme peut avoir des racines
complexes mais aucune racine réelle, e.g. X2 ` 1 “ pX ´ iqpX ` iq est scindé sur C, mais pas sur R.

Exemple 34 Les polynômes de degré 1 sont scindés.
En effet, P est non constant de la forme aX ` b, avec a, b P K et a ‰ 0, et admet ´b{a pour racine dans K.

Exemple 35 Pour tout n P N˚, le polynôme Xn ´ 1 est scindé sur C. Précisément : Xn ´ 1 “

n´1
ź

k“0

´

X ´ e
2ikπ
n

¯

.

En effet, le polynôme Xn
´ 1 n’est pas constant et admet au plus n racines, étant de degré n. Or Xn

´ 1 admet les n racines
nes de l’unité pour racines distinctes. Enfin, Xn

´ 1 est unitaire.

Un polynôme possède-t-il toujours une racine ? Le théorème majeur suivant apporte une réponse affirmative à cette
question en lien avec le corps C.

Tout polynôme non constant de CrXs possède au moins une racine complexe.‡
Théorème 36 – Théorème de d’Alembert-Gauss†

Démonstration. Admis, conformément au programme. Cf. annexe A pour une démonstration. ■

†. Jean Le Rond d’Alembert (1717 à Paris – 1783 à Paris) est un mathématicien, physicien, philosophe et encyclopédiste français qui a
notamment dirigé avec Denis Diderot l’édition entre 1751 et 1772 de l’Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des
métiers, première encyclopédie française.

Johann Carl Friedrich Gauss (1777 à Brunswick – 1855 à Göttingen) est un mathématicien, astronome et physicien allemand, dont la
contribution aux mathématiques est extraordinaire.

‡. Le corps C est dit algébriquement clos.
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Attention ! Ce théorème est naturellement faux sur R, e.g. le polynôme X2 ` 1 n’a pas de racine réelle.

Tout polynôme non constant de CrXs est scindé sur C.
Corollaire 37

Démonstration. On procède par récurrence sur le degré des polynômes, en établissant pour n ě 1 la propriété

Ppnq : « @P P KrXs, pdegP “ n ùñ P est sindéq ».

L’initialisation a été vue à l’exemple 34 et l’hérédité découle du théorème de d’Alembert-Gauss. ■

Relations entre coefficients et racines Dans l’ensemble de ce paragraphe, on considère

P “ anX
n ` an´1X

n´1 ` . . . ` a1X ` a0 “ an

n
ź

i“1

pX ´ xiq,

un polynôme de degré n scindé sur K, en particulier an ‰ 0.

Pour tout r P J1 , nK, on définit la re fonction symétrique élémentaire en les racines du polynôme P par

σr “
ÿ

1ďi1ă¨¨¨ăirďn

xi1 ¨ ¨ ¨xir .

Définition 38 – Fonctions symétriques élémentaires

Exemple 39 σ1 “

n
ÿ

i“1

xi “ x1 ` . . . ` xn, σ2 “
ÿ

1ďiăjďn

xixj “ x1x2 ` x1x3 ` . . . ` xn´1xn, et σn “

n
ź

i“1

xi “ x1x2 ¨ ¨ ¨xn.

Exemple 40
• Pour n “ 2,

P “ a2X
2 ` a1X ` a0 “ a2pX ´ x1qpX ´ x2q “ a2X

2 ´ a2px1 ` x2qX ` a2x1x2

et il y a deux fonctions symétriques élémentaires qui vérifient

σ1 “ x1 ` x2 “ ´
a1
a2

et σ2 “ x1x2 “
a0
a2

.

Il s’agit des relations coefficients/racines pour le trinôme du second degré annoncées au chapitre 6.
• Pour n “ 3,

P “ a3X
3 ` a2X

2 ` a1X ` a0 “ a3pX ´ x1qpX ´ x2qpX ´ x3q

. . . “ a3X
3 ´ a3px1 ` x2 ` x3qX2 ` a3px1x2 ` x1x3 ` x2x3qX ´ a3x1x2x3

et il y a trois fonctions symétriques élémentaires qui vérifient

σ1 “ x1 ` x2 ` x3 “ ´
a2
a3

, σ2 “ x1x2 ` x1x3 ` x2x3 “
a1
a3

et σ3 “ x1x2x3 “ ´
a0
a3

.

En toute généralité, les formules de Viète† permettent d’exprimer les fonctions symétriques élémentaires en les
racines d’un polynôme scindé en fonction de ses coefficients.

Pour tout r P J1 , nK, σr “ p´1qr
an´r

an
. En particulier,

σ1 “

n
ÿ

i“1

xi “ ´
an´1

an
(somme des racines) et σn “

n
ź

i“1

xi “ p´1qn
a0
an

(produit des racines).

Théorème 41 – Formules de Viète

†. François Viète (1540 à Fontenay-le-Comte (Vendée) – 1603 à Paris) est un mathématicien français. Il mena ses recherches mathéma-
tiques en parallèle de ses charges publiques de maître des requêtes au parlement de Rennes, sous Charles IX, puis de maître des requêtes
ordinaires de l’hôtel du roi, sous Henri III. Viète est l’un des premiers cryptologues à systématiser l’art de casser les codes.
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Démonstration. On généralise la preuve des cas n “ 2 et n “ 3 de l’exemple 40 en remarquant que

P “ an

n
ź

i“1

pX ´ xiq “ an

`

Xn
´ σ1X

n´1
` σ2X

n´2
´ σ3X

n´3
` . . . ` p´1q

nσn

˘

,

ce qui mène au résultat par identification des coefficients. ■

Remarque 42 Plus généralement, on peut démontrer que toute expression polynomiale symétrique en les racines
d’un polynôme peut s’exprimer comme un polynôme à coefficients dans K en les fonctions symétriques élémentaires
et donc en les coefficients du polynôme.

Exemple 43 Si x1, x2, x3 sont les trois racines complexes de l’équation x3 ` px ` q “ 0, avec p, q P C, alors

x2
1 ` x2

2 ` x2
3 “ px1 ` x2 ` x3q

2
´ 2px1x2 ` x1x3 ` x2x3q “ σ2

1 ´ 2σ2 “ ´2p.

Exemple 44 Pour tout n ě 2,
n´1
ÿ

k“0

e2ikπ{n “
ÿ

ωPUn

ω “ 0 et
n´1
ź

k“0

e2ikπ{n “
ź

ωPUn

ω “ p´1qn`1.

En effet, pour le polynôme scindé Xn
´ 1 (cf. exemple 35), σ1 “

ÿ

ωPUn

ω et σn “
ź

ωPUn

ω. Or les coefficients des termes de degré

n ´ 1 et 0 valent respectivement 0 et ´1, d’où σ1 “ p´1q
1 0

1
“ 0 et σn “ p´1q

n ´1

1
“ p´1q

n`1.

3 Polynômes d’interpolation de Lagrange
Position du problème. On recherche un polynôme de degré au plus n coïncidant en n`1 points distincts avec une
fonction f ou, de façon équivalente, prenant en n ` 1 points distincts x0, . . . , xn`1, n ` 1 valeurs (non nécessairement
distinctes) imposées y0, . . . , yn.

La stratégie que nous allons développer consiste à commencer par le cas où les valeurs imposées sont toutes nulles,
sauf une égale à 1. Le cas général s’en déduira par combinaison linéaire.

Soit x0, . . . , xn P K distincts. Pour tout i P J0 , nK, on définit le ie polynôme de Lagrange‡ associé aux points
x0, . . . , xn par

Li “
ź

0ďjďn
j‰i

X ´ xj

xi ´ xj
.

Propriété fondamentale. Pour tous i, j P J0 , nK, Lipxjq “ δi,j .
En particulier, Li est de degré n et scindé sur K (ses racines sont x0, . . . , xi´1, xi`1, . . . , xn (mais pas xi)).

Définition-théorème 45 – Polynômes de Lagrange d’une famille de points

Démonstration. Simples vérifications. ■

Exemple 46 Pour n “ 2, L0 “
pX ´ x1qpX ´ x2q

px0 ´ x1qpx0 ´ x2q
, L1 “

pX ´ x0qpX ´ x2q

px1 ´ x0qpx1 ´ x2q
et L2 “

pX ´ x0qpX ´ x1q

px2 ´ x0qpx2 ´ x1q
.

Soit x0, . . . , xn P K distincts et y0, . . . , yn P K quelconques. Il existe alors un et un seul polynôme P dans

KnrXs tel que, pour tout i P J0 , nK, P pxiq “ yi, en l’occurrence P “

n
ÿ

i“0

yiLi.

Théorème 47 – Polynôme d’interpolation de Lagrange

Démonstration. ... ■
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Exemple 48 Considérons f : x ÞÝÑ sin
xπ

2
sur r0 , 4s, pour laquelle fp0q “ fp2q “ fp4q “ 0, fp1q “ 1 et fp3q “ ´1,

et notons L0, . . . , L4 les cinq polynômes de Lagrange associés aux points 0, . . . , 4. Le polynôme d’interpolation de

Lagrange de f aux points 0, . . . , 4 est donc le polynôme
4
ÿ

i“0

fpiqLi “ L1 ´ L3. Or

L1 “ ´
XpX ´ 2qpX ´ 3qpX ´ 4q

6
, L3 “ ´

XpX ´ 1qpX ´ 2qpX ´ 4q

6
et L1 ´ L3 “

XpX ´ 2qpX ´ 4q

3
.

Avec les notations du théorème 47, les polynômes Q P KrXs tels que Qpxiq “ yi, pour tout i P J0 , nK, sont

exactement les polynômes de la forme
n
ÿ

i“0

yiLi ` R
n
ź

i“0

pX ´ xiq, R décrivant KrXs.

Corollaire 49 – Description de l’ensemble des polynômes interpolateurs

Démonstration. ... ■

4 Polynômes irréductibles dans CrXs et RrXs

Un polynôme P de KrXs est dit irréductible (sur K) lorsqu’il est non constant et lorsque ses seuls diviseurs sont
les éléments de K˚ et les associés de P , autrement dit P est non constant et vérifie

@A,B P KrXs, rP “ AB ùñ pdegA “ 0 ou degB “ 0qs.

Définition 50 – Polynôme irréductible

Exemple 51
• Tout polynôme de degré 1 est irréductible, le produit de deux polynômes non constants étant au moins de degré 2.
• Un polynôme irréductible dans KrXs possédant une racine α P K est de degré 1. En effet, il est divisible par le

polynôme non constant X ´ α qui lui est donc associé.
• Un polynôme qui n’admet pas de racine dans K n’est pas nécessairement irréductible dans KrXs, comme le prouve

l’exemple de
`

X2 ` 1
˘2 dans RrXs.

• En revanche un polynôme de degré 2 ou 3 qui n’a pas de racine dans K est irréductible dans KrXs, puisqu’une
décomposition non triviale d’un tel polynôme utilise nécessairement un polynôme de degré 1 qui a donc une racine.

• Un polynôme de RrXs de degré 2 est donc irréductible dans RrXs si, et seulement si, son discriminant est strictement
négatif.

Remarque 52 Soit P,Q P KrXs. Si P est irréductible et si Q est non constant et divise P , alors P et Q sont associés.

On appelle factorisation irréductible sur K d’un polynôme non nul de KrXs toute écriture de P sous la forme
d’un produit d’un élément de K˚ et d’un nombre fini de polynômes irréductibles unitaires sur K.

Définition 53 – Factorisation irréductible

Remarque 54 Nous allons voir que tout polynôme non nul de KrXs admet une et une seule factorisation irréductible
sur K (cf. théorèmes 56 et 58). Les polynômes irréductibles de l’anneau KrXs sont ainsi les analogues des nombres
premiers dans l’anneau Z.

‡. Joseph Louis de Lagrange (1736 à Turin – 1813 à Paris) est un mathématicien, mécanicien et astronome, originaire du royaume de
Sardaigne et naturalisé français. À l’âge de trente ans, il quitte Turin et va séjourner à Berlin pendant vingt-et-un ans. Ensuite, il s’installe
pour ses vingt-six dernières années à Paris où il prend la nationalité française en 1802. Fondateur du calcul des variations, avec Euler, et
de la théorie des formes quadratiques, il démontre notamment la conjecture de Bachet : tout entier positif est somme de quatre carrés.
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4.1 Factorisation irréductible dans CrXs

Les théorèmes suivants sont des corollaires du théorème de d’Alembert-Gauss.

Les polynômes irréductibles de CrXs sont les polynômes de degré 1.
Théorème 55 – Irréductibles de CrXs

Démonstration. Clair d’après les deux premiers points de l’exemple 51. ■

Tout polynôme non constant de CrXs est scindé sur C et sa factorisation irréductible coïncide avec cette forme
scindée, en particulier elle est unique à l’ordre près des facteurs. Précisément, tout polynôme P non constant de
CrXs s’écrit

P “ α
r
ź

k“1

pX ´ λkq
mk

où les λk sont les racines distinctes de P de multiplicités respectives mk et α son coefficient dominant.

Théorème 56 – Factorisation irréductible dans CrXs

Démonstration. L’existence d’une telle factorisation découle directement du corollaire 37 et son unicité de la notion de multi-
plicité d’une racine. ■

✎ En pratique ✎ Factoriser un polynôme de CrXs équivaut à déterminer ses racines dans C.

4.2 Factorisation irréductible dans RrXs

Les polynômes irréductibles de RrXs sont les polynômes de degré 1 et les polynômes de degré 2 de discriminant
strictement négatif, i.e. sans racine réelle.

Théorème 57 – Irréductibles de RrXs

Démonstration. D’après l’exemple 51, les polynômes de RrXs de degré 1, ou de degré 2 et de discriminant strictement négatif
sont irréductibles. Montrons qu’il s’agit des seuls.

Soit P P RrXs un polynôme irréductible. En particulier, P est non constant et admet donc une racine λ P C (théorème de
d’Alembert-Gauss).

• Si λ P R, alors X ´ λ divise P . Or P est irréductible, ainsi P et X ´ λ sont associé et P est donc de degré 1.
• Si λ R R, alors λ est aussi racine de P , car P est à coefficients réels (théorème 18). Ainsi pX ´ λqpX ´ λq divise P , or

pX ´ λqpX ´ λq “ X2
´ 2RepλqX ` |λ|2 P RrXs.

À nouveau, P étant irréductible, P et X2
´ 2RepλqX ` |λ|2 sont associé et P est donc de degré 2 et sans racine réelle,

i.e. de discriminant strictement négatif. ■

La factorisation irréductible d’un polynôme non constant P de RrXs est unique, à l’ordre près des facteurs.
Précisément, elle est de la forme

P “ α
r
ź

i“1

pX ´ λiq
mi ˆ

s
ź

j“1

`

X2 ` bjX ` cj
˘nj

,

avec • α le coefficient dominant de P ;
• λ1, . . . , λr les racines réelles distinctes de P , de multiplicités respectives m1, . . . ,mr ;
• X2 ` bjX ` cj des polynômes distincts et irréductibles sur R et nj P N˚, pour tout j P J1 , sK.

Théorème 58 – Factorisation irréductible dans RrXs

Démonstration. Soit P P RrXs un polynôme non constant. Puisque P est à coefficients réels, ses racines non réelles peuvent
être regroupées par paires de conjuguées de mêmes multiplicités (théorème 18). Ainsi, P étant scindé sur C,

P “ α
r
ź

i“1

pX ´ λiq
mi ˆ

s
ź

j“1

pX ´ ωjq
nj pX ´ ωjq

nj ,
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avec α le coefficient dominant de P , λk les racines réelles de P , et ωk et ωk les racines complexes conjuguées. Or, pour tout
j P J1 , sK,

pX ´ ωjqpX ´ ωjq “ X2
´ 2RepωjqX ` |ωj |2

et ce trinôme à coefficients réels est de discriminant strictement négatif. Enfin cette factorisation sur R est unique, car dans le
cas contraire P aurait plusieurs formes scindées sur C, ce qui est exclu. ■

✎ En pratique ✎ La factorisation irréductible sur R d’un polynôme de RrXs se déduit de sa forme scindée sur C
par regroupement des racines non réelles par paires de conjuguées.

Exemple 59 – Factorisation/développement classique Pour tout θ P R,
`

X ´ eiθ
˘`

X ´ e´iθ
˘

“ X2 ´ 2 cospθqX ` 1.
En particulier, le polynôme X2 ´ 2 cospθqX ` 1 est irréductible sur R lorsque θ ı 0 rπs.

Exemple 60 Pour factoriser X5 ` 1 sur R, on commence par le factoriser sur C :

X5
` 1 “

´

X ´ eiπ{5
¯´

X ´ e3iπ{5
¯

pX ` 1q

´

X ´ e7iπ{5
¯´

X ´ ei9π{5
¯

puis on regroupe les facteurs conjugués :

X5
` 1 “ pX ` 1q

´´

X ´ eiπ{5
¯´

X ´ ei9π{5
¯¯´´

X ´ e3iπ{5
¯´

X ´ e7iπ{5
¯¯

“ pX ` 1q

´

X2
´ 2 cos

π

5
X ` 1

¯

ˆ

X2
´ 2 cos

3π

5
X ` 1

˙

.

Attention ! En dépit des apparences pX ` 1q
`

X2 ´ 3X ` 2
˘2 n’est pas la factorisation irréductible de ce

polynôme sur R, car X2 ´ 3X ` 2 “ pX ´ 1qpX ´ 2q (ce trinôme n’est pas de discriminant strictement négatif).

5 PGCD et PPCM
Les énoncés de cette section sont largement analogues à ceux du chapitre Arithmétique dans Z. Certaines démons-

trations seront donc omises.

5.1 PGCD de deux polynômes, algorithme d’Euclide
Soit A et B deux polynômes dont l’un au moins est non nul. L’ensemble tdegD | D divise A et Bu est une partie

non vide (elle contient 0, car 1 divise A et B) et majorée de N (par le degré de A ou de B), il possède donc un plus
grand élément. Ceci légitime la définition suivante.

• Soit A et B deux polynômes dont l’un au moins est non nul. On appelle plus grand commun diviseur (ou
PGCD) de A et B tout diviseur commun de A et B de degré maximal.

• Par convention, 0 est le seul PGCD de 0 et 0, et on note 0^0 “ 0.

Définition 61 – PGCD de deux polynômes

Exemple 62 Pour tout A P KrXs, les PGCD de A et 0 sont exactement les associés de A.
En effet, si A est non nul, les diviseurs communs de A et 0 sont les diviseurs de A, or les diviseurs de A de degré maximal sont
ses associés.

Le principe à la base de l’algorithme d’Euclide subsiste.

Pour tous A,B,K P KrXs, A`KB et B ont les mêmes diviseurs communs que A et B, et donc aussi les mêmes
PGCD.

Théorème 63 – Principe à la base de l’algorithme d’Euclide

Algorithme d’Euclide L’algorithme d’Euclide s’adapte mutatis mutandis à deux polynômes de KrXs et fournit
un algorithme de calcul effectif du PGCD. Précisément, étant donnés deux polynômes A et B de KrXs, définissons
une suite de polynômes Rk par

• R0 “ A et R1 “ B ;
• pour tout k P N, tant que Rk`1 ‰ 0, Rk`2 est le reste de la division euclidienne de Rk par Rk`1.
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Lors de la deuxième étape, si Rk`1 ‰ 0, on a par construction degRk`2 ă degRk`1. La suite des degrés des
polynômes ainsi construite est strictement décroissante à partir du rang 1 et à valeurs dans N, il existe donc un rang
N tel que RN ‰ 0 et RN`1 “ 0, ce qui assure la terminaison de l’algorithme.

Par ailleurs, d’après le théorème précédent, les diviseurs communs de A et B sont ceux de R1 et R2, puis de R2 et
R3, ..., et enfin de RN et RN`1, donc les diviseurs de RN , puisque RN`1 “ 0. Ainsi les diviseurs communs de A et B
sont exactement les diviseurs de RN et leurs PGCD sont donc les associés de RN (cf. exemple 62). En particulier, les
PGCD de A et B sont associés.

Soit A,B P KrXs.
• Les PGCD de A et B sont associés. Si A ou B est non nul, un seul de ces PGCD est unitaire, on l’appelle le

PGCD de A et B et on le note A^B.
• Les diviseurs communs de A et B sont les diviseurs de A^B.

Théorème 64 – « Unicité » du PGCD de deux polynômes, lien avec les diviseurs communs

Bilan : À une constante multiplicative près, A^B est le dernier reste non nul obtenu
dans la suite des divisions successives des restes Rk de l’algorithme d’Euclide.

Algorithme d’Euclide étendu L’algorithme d’Euclide étendu s’adapte mutatis mutandis à deux polynômes de
KrXs. Précisément, étant donnés deux polynômes A et B de KrXs, définissons des suites de polynômes Rk, Uk et Vk

par • R0 “ A, U0 “ 1 et V0 “ 0 ;
• R1 “ B, U1 “ 0 et V1 “ 1 ;
• pour tout k P N, tant que Rk`1 ‰ 0, on considère Rk`2 et Qk`2 le reste et le quotient de la division

euclidienne de Rk par Rk`1, ainsi Rk`2 “ Rk ´ Qk`2Rk`1, et on pose

Uk`2 “ Uk ´ Qk`2Uk`1 et Vk`2 “ Vk ´ Qk`2Vk`1.

Considérons le rang N tel que RN ‰ 0 et RN`1 “ 0 (cf. algorithme d’Euclide), une récurrence double sur k P J0 , NK
permet alors d’établir la propriété

Ppkq : « Rk “ AUk ` BVk ».

En particulier, au rang N , A^B et RN “ AUN `BVN sont associés, ce qui démontre le théorème fondamental suivant.

Soit A,B P KrXs. Il existe deux polynômes U, V P KrXs tels que AU `BV “ A^B. Une telle relation est appelée
une relation de Bézout de A et B de coefficients U et V .

Théorème 65 – Relations de Bézout

Attention ! Comme dans Z, il n’y a pas unicité des polynômes U et V .

Exemple 66 Déterminons le PGCD et une relation de Bézout des polynômes A “ 6X4 ` 8X3 ´ 7X2 ´ 5X ´ 2 et
B “ 6X3 ´ 4X2 ´ X ´ 1.
En effet, A^B “ X ´ 1 “ ´p3X ` 1qA `

`

3X2 ` 7X ` 3
˘

B, puisque

k Rk Qk Uk Vk

0 6X4 ` 8X3 ´ 7X2 ´ 5X ´ 2 1 0

1 6X3 ´ 4X2 ´ X ´ 1 0 1

2 2X2 ´ 2X X ` 2 1 ´X ´ 2

3 X ´ 1 3X ` 1 ´3X ´ 1 3X2 ` 7X ` 3

A “ pX ` 2q

q2

ˆ B ` 2X2 ´ 2X
r2

B “ p3X ` 1q

q3

ˆ
`

2X2 ´ 2X
˘

` X ´ 1
r3

2X2 ´ 2X “ 2X
q4

ˆ pX ´ 1q ` 0
r4

Soit A,B,C,K des polynômes à coefficients dans K.
(i) Associativité. pA^Bq^C “ A^pB^Cq.
(ii) Factorisation par un diviseur commun. pKAq^pKBq et KpA^Bq sont associés.

Théorème 67 – Propriétés du PGCD de deux polynômes
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✎ En pratique ✎ Si l’on connaît la factorisation irréductible de deux polynômes non nuls de KrXs, on peut
déterminer leur PGCD sans recourir à l’algorithme d’Euclide. Le principe est le même que dans Z (cf. théorème 58 du
chapitre 13).

Exemple 68
“

2XpX ` 1q2pX ` 2q3
‰

^
“

XpX ` 2q4
`

X2 ` 1
˘‰

“ XpX ` 2q3.

5.2 PGCD d’une famille finie de polynômes

Soit A1, . . . , Ar P KrXs des polynômes dont l’un au moins est non nul.
• On appelle plus grand commun diviseur (ou PGCD) de A1, . . . , Ar tout diviseur commun de A1, . . . , Ar de

degré maximal.
• Les PGCD de A1, . . . , Ar sont associés. Un seul d’entre eux est unitaire, il est appelé le PGCD de A1, . . . , Ar

et noté A1^. . .^Ar.
• Par convention, 0^. . .^0 “ 0.

Définition-théorème 69 – PGCD d’une famille finie de polynômes

Comme dans Z, la propriété d’associativité du PGCD, permet de ramener le calcul du PGCD d’une famille finie
de polynômes à des calculs successifs de PGCD de deux polynômes.

Exemple 70
`

X3 ` 4X2 ` 5X ` 2
˘

^
`

X3 ` 4X2 ` 4X
˘

^
`

X2 ´ 4
˘

“ pX ` 2q^
`

X2 ´ 4
˘

“ X ` 2.

Les résultats du paragraphe précédents s’étendent au PGCD d’une famille finie de polynômes.

Soit A1, . . . , Ar P KrXs.
• Les diviseurs communs de A1, . . . , Ar sont les diviseurs de A1^. . .^Ar.
• Pour tout K P KrXs, pKA1q^. . .^pKArq et KpA1^. . .^Arq sont associés.
• Il existe des polynômes U1, . . . , Ur P KrXs tels que A1^. . .^Ar “ A1U1 ` . . . ` ArUr. Une telle relation est

appelée une relation de Bézout de A1, . . . , Ar de coefficients U1, . . . , Ur.

Théorème 71

5.3 Polynômes premiers entre eux

Soit A,B,A1, . . . , Ar P KrXs.
• A et B sont dits premiers entre eux lorsque 1 est leur seul diviseur commun unitaire, i.e. A^B “ 1.
• A1, . . . , Ar sont dits premiers entre eux dans leur ensemble lorsque 1 est leur seul diviseur commun unitaire,

i.e. A1^. . .^Ar “ 1.
• A1, . . . , Ar sont dits premiers entre eux deux à deux lorsque Ai^Aj “ 1, pour tous i, j P J1 , rK distincts.

Définition 72 – Polynômes premiers entre eux dans leur ensemble/deux à deux

Attention ! Premiers entre eux deux à deux ùñ Premiers entre eux dans leur ensemble

mais la réciproque est bien sûr fausse, comme pour les entiers.

Exemple 73
• Soient a et b deux éléments distincts de K. Si p et q sont deux entiers naturels, les polynômes A “ pX ´ aqp et
B “ pX ´ bqq sont premiers entre eux puisque les diviseurs unitaires de A sont les polynômes pX ´aqk, avec k ď p,
et que parmi eux seul 1 divise B.

• Pour pa1, a2, . . . , apq P Kp, le polynôme A “ pX ´ a1qpX ´ a2q . . . pX ´ apq est premier avec tout polynôme n’ad-
mettant aucun ai pour racine. En effet, les diviseurs unitaires de A sont les polynômes de la forme

ś

iPIpX ´ aiq,
avec I Ă J1 , pK, et aucun d’eux hormis 1 ne divise B, puisque A et B n’ont pas de racine commune.

• En particulier, deux polynômes de CrXs sont premiers entre eux si et seulement s’ils n’ont pas de racine commune.
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Soit A,B,C, P,A1, . . . , Ar P KrXs.
• Théorème de Bézout. Les assertions suivantes sont équivalentes :

(i) A^B “ 1 (ii) Il existe deux polynômes U, V P KrXs tels que AU ` BV “ 1.

• Théorème de Gauss. Si A | BC et A^B “ 1, alors A | C.
• Lemme d’Euclide. Pour tout P P KrXs irréductible, P | AB ðñ P | A ou P | B.
• Produits de polynômes.

✕ Si chacun des polynômes A1, . . . , Ar est premier avec P , alors leur produit A1 ¨ ¨ ¨Ar l’est aussi.
✕ Si A1, . . . , Ar divisent P et sont premiers entre eux deux à deux, alors leur produit A1 ¨ ¨ ¨Ar divise P .

Théorème 74 – Théorèmes de Bézout et Gauss, conséquences

Exemple 75 On peut ainsi retrouver plus rapidement des résultats déjà connus.
• Si a, b P K sont distincts, alors les polynômes X ´ a et X ´ b sont premiers entre eux, comme le prouve l’identité

de Bézout X´a
b´a ` X´b

a´b “ 1. On en déduit, pour tous p, q P N2, que pX ´ aqp et pX ´ bqq sont premiers entre eux.
• Soit A un polynôme admettant α1, α2, . . . , αp pour racines distinctes d’ordres respectifs r1, r2, . . . , rp.

Par définition, les polynômes pX ´ αiq
ri divisent A et, comme ils sont premiers entre eux deux à deux, leur produit

divise A (comme nous l’avions établi au théorème 23).

Soit A,B P CrXs et α
r
ź

k“1

pX ´ λkq
mk la factorisation irréductible de A, les λk étant distincts. Le polynôme A

divise B si et seulement si, pour tout i P J1 , rK, λi est racine de B de multiplicité supérieure ou égale à mi.

Corollaire 76 – Caractérisation de la divisibilité dans CrXs

5.4 PPCM de deux polynômes

Soit A,B P KrXs non nuls. On appelle plus petit commun multiple (ou PPCM) de A et B tout multiple commun
non nul de A et B de degré minimal.
• Existence et unicité. A et B possèdent un unique PPCM unitaire appelé le PPCM de A et B, noté A_B.

Leurs autres PPCM sont les associés de A_B.
• Multiples communs et multiples du PPCM. Les multiples communs de A et B sont les multiples de
A_B, autrement dit AKrXs X BKrXs “ pA_BqKrXs.

• Lien avec le PGCD. Les polynômes AB et pA^BqpA_Bq sont associés.

Définition-théorème 77 – PPCM de deux polynômes, lien avec le PGCD

✎ En pratique ✎ Si l’on connaît la factorisation irréductible de deux polynômes non nuls de KrXs, on peut
déterminer leur PPCM sans calculer au préalable leur PGCD. Le principe est le même que dans Z (cf. théorème 58
du chapitre 13).

Exemple 78
“

2XpX ` 1q2pX ` 2q3
‰

_
“

XpX ` 2q4
`

X2 ` 1
˘‰

“ XpX ` 1q2pX ` 2q4
`

X2 ` 1
˘

.

Quelques résultats classiques :
• Racines rationnelles d’un polynôme à coefficients entiers (exemple 11).
• Reste de la division euclidienne de Xk par Xn ´ 1 (exercice 7).
• Théorème des deux carrés dans RrXs (exercice 48).
• pXm ´ 1q^pXn ´ 1q “ Xm̂ n ´ 1 (exercice 50).
• Polynômes P tels que P 1 | P (exercice 54).
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14 Arithmétique dans l’anneau KrXs

Compétences à acquérir
• Calculer le reste d’une division euclidienne : exercices 4, 5 et 7 à 9.
• Montrer qu’un polynôme est multiple d’un autre (via la division euclidienne) : exercices 2, 3 et 6.
• Déterminer la multiplicité d’une racine : exercices 10 et 16
• Montrer qu’un polynôme est multiple d’un autre (via la multiplicité des racines) : exercices 11 à 15.
• Utiliser la rigidité : exercices 19 à 24.
• Utiliser les formules de Viète : exercices 25 à 32.
• Utiliser les polynômes interpolateurs de Lagrange : exercices 33 à 36.
• Déterminer la factorisation irréductible sur R ou C d’un polynôme : exercices 38 à 43.
• Calculer le PGCD de deux polynômes : exercices 49 et 50.

A Annexe
Démonstration du théorème 36.

Soit P un polynôme à coefficients complexes de degré p ą 0. Pour montrer que P possède une racine complexe, considérons
α “ inf

zPC
|P pzq|, qui existe puisque t|P pzq| | z P Cu est une partie non vide de R`, et montrons que cette borne inférieure est

atteinte, puis qu’elle est nulle.

Etape 1 - L’inf est atteint. Posons P “

p
ÿ

k“0

akX
k avec ap ‰ 0, alors, pour tout z P C avec r “ |z|,

|P pzq| ě |apz
p| ´

∣∣∣∣∣
p´1
ÿ

k“0

akz
k

∣∣∣∣∣ ě |ap|rp ´

p´1
ÿ

k“0

|ak|rk,

d’après l’inégalité triangulaire. Ce minorant définit une fonction polynomiale réelle en la variable r, qui tend vers `8 quand r
tend vers `8 (règle du plus haut degré). Elle est donc plus grande que α ` 1 au voisinage de `8, ce qui prouve qu’il existe un
disque D centré en 0 en dehors duquel on a |P pzq| ě α ` 1.

Puisque α “ inf
zPC

|P pzq|, on peut trouver une suite de complexes punqnPN telle que lim
nÑ`8

|P punq| “ α. Cette suite est donc,

à partir d’un certain rang, dans le disque D, et par suite elle est bornée. On peut donc en extraire une sous-suite
`

uφpnq

˘

nPN
convergeant vers un complexe z0 (théorème de Bolzano-Weierstrass). Comme

P
`

uφpnq

˘

“

p
ÿ

k“0

aku
k
φpnq,

on en déduit lim
nÑ`8

P
`

uφpnq

˘

“ P pz0q, ce qui donne

α “ lim
nÑ`8

∣∣P `

uφpnq

˘
∣∣ “ |P pz0q|.

Etape 2 - α “ 0. Montrons par l’absurde que P pz0q “ 0 en supposant α ą 0.

Quitte à considérer le polynôme
P pz0 ` Xq

P pz0q
, on peut supposer α “ 1 et z0 “ 0. Le polynôme non constant P s’écrit donc

P “ 1 ´ aqX
q

`

p
ÿ

k“q`1

akX
k avec aq ‰ 0 et 1 ď q ď p.

Posons aq “ ρ e´iθ avec ρ P R˚
` et θ P R. Pour z “ r eiθ{q, avec r ą 0, on a

P pzq “ 1 ´ ρrq `

p
ÿ

k“q`1

akr
k eikθ{q

d’où
|P pzq| ď |1 ´ ρrq| `

p
ÿ

k“q`1

|ak|rk.

Si l’on suppose r ď q
a

1{ρ, on a |1 ´ ρrq| “ 1 ´ ρrq et donc

|P pzq| ´ 1 ď ´ρrq `

p
ÿ

k“q`1

|ak|rk

soit, sachant r ą 0,
|P pzq| ´ 1

rq
ď ´ρ `

p
ÿ

k“q`1

|ak|rk´q
ÝÑ
rÑ0

´ρ ă 0.

Ainsi, le majorant ´ρrq `

p
ÿ

k“q`1

|ak|rk de |P pzq|´ 1 est strictement négatif au voisinage de 0. Par conséquent, il existe z P C tel

que |P pzq| ă 1 “ α, ce qui est contradictoire.
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