17 | Arithmétique dans I'anneau K| X |

Dans I’ensemble de ce chapitre, K désigne 1'un des corps R ou C. T

Divisibilité dans K[X]

Les notions et résultats de cette section sont analogues & ceux que vous connaissez concernant les entiers relatifs.

il Relation de divisibilité

Définition 1 — Divisibilité, diviseur, multiple
Soit A et B deux polynoémes a coefficients dans K.

e On dit que A divise B, ou que A est un diviseur de B, ou que B est divisible par A ou encore que B est un
multiple de A lorsqu’il existe un polynome C € K[X] tel que B = AC'. Cette relation se note A | B.

e Les polynémes A et B sont dits associés lorsque A | B et B | A.

Exemple 2
e Le polynome X? + X — 6 est divisible par X + 3 car X? + X — 6 = (X + 3)(X — 2).

Le polynéme nul est divisible par tous les polynémes mais il ne divise que lui-méme.

Les polynomes constants et non nuls divisent tous les polynoémes.
e Si A| B avec B non nul, alors deg B > deg A.

En effet, il existe C € K[X]\{0} tel que B = AC, dont il découle deg B = deg A + deg C' = deg A.

—— Théoréme 3 — Propriétés de la relation de divisibilité
Soit A, B,C, D € K[X]
(i) Caractérisation des polyndmes associés. A|B et B|A <« 3JxeK¥ A=)\B.

(ii) Réflexivité et transitivité. La relation de divisibilité | est réflexive et transitive sur K[X].

(iii) Combinaison linéaire. (DA et D|B) = (VU,VeK[X], D| (AU + BV)).

(iv) Produit. (A|B et C|D) = AC|BD. En particulier, A|B = (VkeN, A*|B¥).
Démonstration. ... [ ]

Remarque 4 La relation de divisibilité restreinte a I’ensemble des polynémes unitaires est une relation d’ordre.

Division euclidienne

Théoréme 5 — Division euclidienne
Soit A, B € K[X] avec B NON NUL. Il existe un unique couple de polynémes (Q, R) € K[X]? pour lequel

A=BQ+ R et degR <degB.

On appelle A le dividende de la division euclidienne de A par B, B le diviseur, @Q le quotient et R le reste.

Démonstration. ... [ |

1. L’essentiel des résultats de ce chapitre énoncé pour le corps K reste valable pour un corps quelconque, a l’exception notable du
théoréme 14, qui lui reste valable pour K un sous-corps de C.
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Remarque 6
e Le polynéme B divise A si et seulement si le reste de la division de A par B est nul.

e Soit A, B € R[X] avec B non nul. La propriété d’unicité du quotient et du reste de la division euclidienne permet
d’établir que B divise A dans R[X] si et seulement s'il divise A dans C[X].

Exemple 7 La division euclidienne de 7X° + 4X* 4+ 2X2? — X + 5 par X2 + 2 donne

TXP 44X +2X% - X +5=(X?+2) (7X° +4X° — 12X — 8) + 23X +21.
N —

_

quotient reste

En particulier, 7X° + 4X* + 2X3 — X + 5 n’est pas divisible par X? + 2, puisque le reste de la division euclidienne
entre ces deux polyndémes n’est pas nul.

Racines d’un polyn6me

BN Racines

—— Lemme 8 — Division euclidienne par X — A
Soit A € K et P € K[X]. Le reste de la division euclidienne de P par X — X est P()).

Démonstration. Par division euclidienne, il existe @, R € K[X] tels que P = (X — A\)Q + R et deg R < 1. Ainsi R est un
polynéme constant. Il suffit alors d’évaluer en A : P(A) = (A — A)Q(X) + R(A\) = R. ™

De ce résultat préliminaire découle la double définition suivante.

Définition 9 — Racine
Soit P € K[X] et A € K. On dit que X est une racine de P (dans K) lorsque l'une des deux assertions équivalentes

i t t vérifiée :
SHIvatiies est vertiee (i) P(\) = 0. (i) P est divisible par X — \.

X ArTEnTION ! ¥ La précision « racine DANS K » n’est pas superflue. Par exemple, le polynome X2 + 1 n’a pas
de racine dans R, alors qu’il en a deux dans C, & savoir i et —1.

% En pratique . Via la notion de racine, on raméne souvent les problémes de divisibilité & des problémes d’éva-
luation, et vice versa.

Exemple 10 Pour tout n € N, le reste de la division euclidienne de X™ par X? —3X +2 vaut (2" — 1) X — (2" — 2).
Le résultat suivant permet de circonscrire la recherche d’éventuelles racines « évidentes » d’un polyndéme.

Exemple 11 — Racines rationnelles d’'un polynéme a coefficients entiers Soit P = a, X™ + ...+ a1 X + ag € Z[X]
et (p,q) € Z x Z* avec paq = 1. Si le rationnel p/q est une racine de P, alors q | a,, et p | ag.

Multiplicité d’une racine

Définition-théoréeme 12 — Multiplicité d’une racine
Soit P € K[X] NON NUL et A € K.
e L’ensemble {k: eN | (X — A)F divise P} posséde un plus grand élément m appelé la multiplicité de A dans P

(on dit aussi que A est racine d’ordre m de P), notée mult(P, A). En résumé, on dit souvent que m est la plus
grande puissance de X — A\ qui divise P.

En particulier, dire que A n’est pas une racine de P revient & dire que A a pour multiplicité 0 dans P. Une
racine est dite simple lorsqu’elle est de multiplicité 1, double lorsqu’elle est de multiplicité 2, etc.
e Plus concrétement, 'entier m est caractérisé par chacune des deux assertions équivalentes suivantes :
(i) P est divisible par (X — \)™ mais PAS par (X — \)™TL
(ii) 1l existe Q € K[X] tel que P = (X — \)™Q et Q(X\) # 0.
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Démonstration. # = {k € N| (X —X)* | P} posséde un plus grand élément, en tant que partie non vide et majorée de N. En
effet, .# est non vide d’une part, puisqu’il contient 0, et est majoré par deg P d’autre part (cf. exemple 2). [ |

Remarque 13
e Si (X — \)™ divise P, alors la multiplicité de A dans P est SUPERIEURE ou égale a m.
e La multiplicité de A dans P est inférieure ou égale au degré de P (cf. dernier point de exemple 2).

e La notion de multiplicité mult(P, \) est analogue a la notion de valuation p-adique v,(n) d’un entier non nul n.

La formule de Taylor polynomiale (théoréme 34 du chapitre 14) va nous permettre de caractériser la multiplicité
d’une racine d’un polynéme par 'annulation des dérivées successives de ce polynéme en cette racine.

—— Théoréme 14 — Multiplicité et dérivées successives

Soit P € K[X] non nul (avec K € {R,C}), A € K et m € N. Les assertions suivantes sont équivalentes :

(i) X est de multiplicité m dans P; (i) Yke[0,m—1], P®N)=0 BT PM()\) #0.

Démonstration. ... [ ]
Exemple 15 La multiplicité de 1 dans P = X* + 3X3 —3X2 — 7X + 6 est égale a 2.

Exemple 16 Le trinome du second degré aX? 4+ bX + ¢, avec a,b,c € K et a # 0, admet une racine double « si et
b

seulement si b?> — 4ac = 0 et, le cas échéant, o = 5
Remarque 17 Soit P € K[X] non nul, A € K et m € N. Si A est de multiplicité m dans P, alors A est de multiplicité

m —r dans P, pour tout 7 € [0,m].

—— Théoréme 18 — Racines complexes d’un polynéme réel

Soit P € R[X] non nul — & coefficients REELS donc — et A € C. Alors A et A ont méme multiplicité dans P.

Démonstration. P étant a coefficients réels, pour tout k € N, P (X) = P(®)()), la conclusion provient alors du théoréme 14.
]

Exemple 19 A quelle condition nécessaire et suffisante sur n € N le polynome X2 + 1 divise-t-il X + 17

% En pratique ©  Soit A, B € K[X] avec B # 0. Nous avons déja vu (cf. exemple 10) de quelle maniére les racines
de B peuvent étre exploitées lorsque I'on veut déterminer le reste de la division euclidienne de A par B. Le théoréme
14 permet de prendre en compte leurs multiplicités respectives.

e Si B=X(X —1)(X +4), la division euclidienne de A par B s’écrit A = X (X — 1)(X +4)Q + aX? + bX + ¢,
avec @ € K[X] et a,b, c € R, et I'évaluation de cette égalité en les racines 0, 1 et —4 fournit un systéme linéaire
d’inconnue a, b, ¢ aisé & résoudre.

e Si B=(X—-2)3(X +1), la division euclidienne de A par B s’écrit A = (X —2)3(X +1)Q +aX? +bX? +cX +d,
avec @ € K[X] et a,b,¢,d € R. On n’obtient hélas que deux équations en évaluant en 2 et —1, mais on en obtient
deux supplémentaires en exploitant la multiplicité de 2 dans B. En effet, A’(2) = 12a+4b+cet A”(2) = 12a+ 2b.

Exemple 20 Pour tout n € N*, le reste de la division euclidienne de X" par X (X —1)? est (n —1)X? — (n —2)X.

Nombre maximal de racines

—— Lemme 21 — Additivité de la multiplicité d’une racine
Pour tous P,Q € K[X] non nuls et A € K, mult(PQ, A) = mult(P, ) + mult(Q, A).

Démonstration. ... ™

Remarque 22  Ce résultat d’additivité est analogue a celui obtenu pour les valuations p-adiques (théoréme 53 du
chapitre 13).
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Théoréme 23 — Factorisation « par les racines »
Soit P € K[X] NON NUL et A1,..., A\, € K des racines distinctes de P de multiplicités respectives my, ..., m,.

Alors (X — X)™ -+ (X — \)™" divise P. En particulier Z m; < deg P.
i—1

Démonstration. ... [ ]

Exemple 24  Le polynoéme (X — 1)*X?(X + 2) posséde en tout trois racines distinctes (1 de multiplicité 4, 0 de
multiplicité 2 et —2 de multiplicité 1). On dit en revanche qu'’il posséde sept racines comptées avec multiplicité,
puisque 4 +2 +1=17.

% En pratique &  Le théoréme précédent établit la caractérisation suivante de la divisibilité en termes de multiplicité

des racines :
r

[[x=x)m P <« Vie[l,r][, mult(P,\)>m;,
i=1

ol les \; sont des éléments de K DISTINCTS, les m; des entiers naturels non nuls et P € K[X] un polynéme non nul.

Le corollaire suivant est souvent utilisé pour montrer qu’un polynéme est nul.

Corollaire 25 — Nombre maximal de racines comptées avec multiplicité
e Un polynéme NON NUL P posséde au plus deg P racines COMPTEES AVEC MULTIPLICITE.

e En particulier, seul le polynéme nul posséde une infinité de racines.

Un polynéme de degré n ne posséde pas nécessairement n racines comptées avec multiplicité. Nous verrons a la
section 4 que c’est le cas si K = C, mais pas si K = R. Par exemple, X2 + 1 est réel de degré 2, mais n’a pas de racine
réelle.

Ces diverses considérations sur le nombre maximal de racines d’un polynéme conduisent au résultat fondamental
suivant, décliné sous trois formes équivalentes.

Théoréme 26 — Rigidité des polynomes
Soit P € K,,[X]. Si P admet strictement plus de n racines, alors P est nul.
Soit P,Q € K,,[X]. Si P et @ coincident en strictement plus de n valeurs distinctes, alors P = Q.

S-*’!\’!"l

Soit n € N*| xy,..., 2, des éléments DISTINCTS de K et y1,...,y, des éléments de K non nécessairement
distincts. Il existe au plus un polynoéme P € K, _1[X] tel que P(x;) = y;, pour tout i € [1,n]. Ainsi, sous
réserve d’existence, un polyndéme de degré au plus n — 1 est entiérement déterminé par ses valeurs en n points
distincts.

Démonstration. Le point 1 est la contraposée du premier point du corollaire 25. Le point 2 est une conséquence de 1 appliqué
a P — @. Le point 3 n’est qu'une reformulation de 2. |

Remarque 27 Le dernier point du théoréme précédent affirme l'unicité sous réserve d’existence d’un polyndéme de
degré au plus n — 1 prenant des valeurs données en n points fixés. Il n’est pas difficile de construire explicitement un
tel polynome, fournissant ainsi I’existence, comme nous le verrons a la section 3.

Exemple 28 Soit P € R[X]. On suppose que, pour tout n € N, P(n) = n3 —n? + 1. Alors P = X? — X2+ 1let, a
fortiori, pour tout z € C, P(z) = 23 — 22 + 1.

% En pratique & Comme lillustre I'exemple précédent, le théoréme 26 est un théoréme de DES-EVALUATION.
Evaluer consiste a passer d’une égalité polynomiale & une égalité de nombres réels ou complexes. Dés-évaluer, c’est le
contraire : remonter d’une collection d’égalités de nombres & une égalité polynomiale. En d’autres termes, lorsqu’un
polynoéme P est défini par certaines de ses valeurs, il est souvent fructueux d’interpréter cette hypothése sur les valeurs
de P en termes de racines d’un nouveau polyndéme ). Quand ce polyndéme @ a trop de racines, il est nécessairement
nul et on en tire souvent de précieux renseignement sur P.
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Exemple 29 — Polyndmes de Tchebychev (un grand classique)
Pour tout n € N, il existe un unique polynome T, € R[X] tel que, pour tout 0 € R, T},(cos #) = cos(nd).

Exemple 30 1l n’existe pas de polynome P € R[X] tel que, pour tout n € N, P(n) = +v/n2 + 1.

1
Exemple 31 Soit P € R[X] de degré n et tel que, pour tout k € [1,n + 1], P(k) = T Alors P(—1) =n+ 1.

—— Théoréme 32 — Identification polynéme/fonction polynomiale

L’application P —— P est un morphisme d’anneaux injectifs de K[X] dans K¥, dont I’image correspond &
I’ensemble des fonctions polynomiales. Ainsi, deux polynémes sont égaux si et seulement si leurs fonctions poly-
nomiales associées le sont.

Démonstration. Si P = @, alors 15?@ est nulle sur K. Ainsi, tout élément de K est racine de P — @, or K (R ou C) est infini,
P — @ posséde donc une infinité de racine et est par conséquent nul. [ |

Polynémes scindés et relations entre coefficients et racines

—— Définition-théoréme 33 — Polynéme scindé

Un polynéme P € K[X] est dit scindé (sur K) lorsqu’il n’est pas constant et posséde exactement deg P racines
T

(dans K) comptées avec multiplicité, ce qui équivaut a dire que P est de la forme « H(X =)™ ot A, Ay
i=1

sont les racines distinctes de P dans K, de multiplicités respectives my,...,m,, et ol « est son coefficient

dominant.

Démonstration. Si P est scindé sur K, alors H(X — ;)™ divise P (théoréme 23). Ainsi P = Q H(X — )™ avee Q € K[X].
i=1 i=1
Or deg@Q = deg P — deg (H(X — )\i)m’) = 0, ainsi Q € K et, comme H(X — ;)™ est unitaire, Q est égal au coefficient

i=1 i=1

dominant de P. [ |

¥ ArTENTION ! ¥ La précision « scindé SUR K » n’est pas superflue puisqu’un polynéme peut avoir des racines
complexes mais aucune racine réelle, e.g. X2 +1 = (X —i)(X +1) est scindé sur C, mais pas sur R.

Exemple 34 Les polynémes de degré 1 sont scindés.

En effet, P est non constant de la forme aX + b, avec a,b € K et a # 0, et admet —b/a pour racine dans K.

n—1
Exemple 35 Pour tout n € N*, le polynéme X" — 1 est scindé sur C. Précisément : X" —1 = H (X — e%)
k=0
En effet, le polynéme X" — 1 n’est pas constant et admet au plus n racines, étant de degré n. Or X™ — 1 admet les n racines
n°s de I'unité pour racines distinctes. Enfin, X™ — 1 est unitaire.

Un polyndéme posséde-t-il toujours une racine 7 Le théoréme majeur suivant apporte une réponse affirmative a cette
question en lien avec le corps C.

—— Théoréme 36 — Théoréme de d’Alembert-Gauss'
Tout polynéme non constant de C[X] posséde au moins une racine complexe.

Démonstration. Admis, conformément au programme. Cf. annexe A pour une démonstration. [ |

t. Jean Le Rond d’Alembert (1717 a Paris — 1783 a Paris) est un mathématicien, physicien, philosophe et encyclopédiste frangais qui a
notamment dirigé avec Denis Diderot ’édition entre 1751 et 1772 de I’ Encyclopédie ou Dictionnaire raisonné des sciences, des arts et des
métiers, premiére encyclopédie frangaise.

Johann Carl Friedrich Gauss (1777 & Brunswick — 1855 a Gottingen) est un mathématicien, astronome et physicien allemand, dont la
contribution aux mathématiques est extraordinaire.

1. Le corps C est dit algébriquement clos.
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X ArreEnTiOoN ! #  Ce théoréme est naturellement faux sur R, e.g. le polynome X2 + 1 n’a pas de racine réelle.

— Corollaire 37

Tout polynéme non constant de C[X] est scindé sur C.

Démonstration. On procéde par récurrence sur le degré des polynémes, en établissant pour n > 1 la propriété
P(n): «VYPeK[X], (degP=n == P estsindé)».

L’initialisation a été vue a exemple 34 et I’hérédité découle du théoréme de d’Alembert-Gauss. |

Relations entre coefficients et racines Dans ’ensemble de ce paragraphe, on considére

P=a, X"+ a1 X" ' +.. .+ X a9 = ann(X —Z),

i=1

un polynéme de degré n scindé sur K, en particulier a,, # 0.

Définition 38 — Fonctions symétriques élémentaires

Pour tout r € [1,n], on définit la r° fonction symétrique élémentaire en les racines du polynéme P par

R N

I<ii<--<ipr<n

n n
Exemple 39 o, = Z T,=x1+ ...+ T,, 0= Z TiTj = T1T2 + T1X3 + ... + Tp_1Tp, €t op = Hsci = X1T9 " XLy
i=1 1<i<j<n i=1

Exemple 40
e Pour n = 2,
P=ayX?+a1X +ag=ay(X —x1)(X —22) = a2 X? — ag(x1 + 22) X + agxi29
et il y a deux fonctions symétriques élémentaires qui vérifient

aiq ao
01 =] +%g = —— et 092 = X1T2 = —.
az az

Il s’agit des relations coefficients/racines pour le trindome du second degré annoncées au chapitre 6.

e Pour n = 3,
P =a3X?+ a:X?> + a1 X +ap = az(X — 1) (X — 29)(X — x3)
o= a3X3 —az(xy + 2o + 23) X2 + az(z1wo + 2123 + T013) X — azziToT3
et il y a trois fonctions symétriques élémentaires qui vérifient

as a1 Qo
01 =21 +22 +2x3 =——, 09 = X1X2 + £1X3 + ToX3 = — et 03 = T1X2x3 = ——.
as as as

En toute généralité, les formules de Viéte! permettent d’exprimer les fonctions symétriques élémentaires en les
racines d’un polynéme scindé en fonction de ses coefficients.

—— Théoréme 41 — Formules de Viéte

Pour tout r € [1,n], o, = (—1)T@. En particulier,
anp

n
an—1 . ao . .
o1 = Z T; = —— (somme des racines) et Op = nxi = (—1)"— (produit des racines).
; an :
i=1

t. Francois Viete (1540 a Fontenay-le-Comte (Vendée) — 1603 & Paris) est un mathématicien francais. Il mena ses recherches mathéma-
tiques en paralléle de ses charges publiques de maitre des requétes au parlement de Rennes, sous Charles IX, puis de maitre des requétes
ordinaires de I’hotel du roi, sous Henri III. Viéte est I'un des premiers cryptologues & systématiser I’art de casser les codes.
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Démonstration. On généralise la preuve des cas n = 2 et n = 3 de 'exemple 40 en remarquant que
P=a,[[(X—2) =an(X" =1 X" "+ 02X" 2 — 05X 4L 4 (=1)"0n),
=1

ce qui méne au résultat par identification des coefficients. |

Remarque 42 Plus généralement, on peut démontrer que toute expression polynomiale symétrique en les racines
d’un polyndéme peut s’exprimer comme un polynoéme a coefficients dans K en les fonctions symétriques élémentaires
et donc en les coefficients du polynéme.

Exemple 43 Si z1, 22, x5 sont les trois racines complexes de 'équation 23 + px + ¢ = 0, avec p, g € C, alors

x% + m% + mg =(r1 + 22 + :rg)2 —2(z1x0 + T123 + XToT3) = a% — 209 = —2p.

n—1 n—1
Exemple 44 Pour tout n > 2, Z eZikm/n Z w=0 et H eZikm/n H w=(=1)""1
k=0 k=0

wel, wel,

En effet, pour le polynéme scindé X™ — 1 (cf. exemple 35), o1 = 2 w et op = H w. Or les coefficients des termes de degré
wel,, wely,
n;l — (_1)n+1.

. 0
n — 1 et 0 valent respectivement 0 et —1, d’ott o1 = (—1)11 =0et o = (—1) 1

Polynémes d’interpolation de Lagrange

Position du probléme. On recherche un polynéme de degré au plus n coincidant en n + 1 points distincts avec une
fonction f ou, de fagon équivalente, prenant en n + 1 points distincts xo, ..., Zn4+1, 7 + 1 valeurs (non nécessairement
distinctes) imposées yo, . - . , Yn-

La stratégie que nous allons développer consiste & commencer par le cas ou les valeurs imposées sont toutes nulles,
sauf une égale a 1. Le cas général s’en déduira par combinaison linéaire.

—— Définition-théoréme 45 — Polynémes de Lagrange d’une famille de points

Soit xg, ..., r, € K DISTINCTS. Pour tout i € [0, n], on définit le i° polynéme de Lagrange* associé aux points
g, ..., Ty Par X
—
L; = —
0<j<n X; — (Ej
Jj#i

Propriété fondamentale. Pour tous ¢,j € [0,n], L;(z;) = d;;.

En particulier, L; est de degré n et scindé sur K (ses racines sont 2o, ..., Z;—1,Zit1,-.., L, (Mais pas z;)).

Démonstration. Simples vérifications. [ ]

(X — £L'1)(X — 1'2)

(20 — 1) (w0 — 22)’

. (X — .’Eo)(X — .’Ez) o _
Ll N (.131 — .130)(371 — $2) ¢ L2

Exemple 46 Pourn =2, Lg=

—— Théoréme 47 — Polyndme d’interpolation de Lagrange
Soit xg, ..., T, € K DISTINCTS et yg,...,¥n € K quelconques. Il existe alors un et un seul polynéme P dans

n
K, [X] tel que, pour tout ¢ € [0,n], P(x;) = y;, en occurrence P = Z yiLs;.
i=0

Démonstration. ... [ |
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Exemple 48 Considérons f : x — sin% sur [0,4], pour laquelle f(0) = f(2) = f(4) =0, f(1) = 1et f(3) = —1,
et notons Lg,..., L4 les cinq polynomes de Lagrange associés aux points 0,...,4. Le polynéme d’interpolation de
4

Lagrange de f aux points 0,...,4 est donc le polynéme Z fG)L; = Ly — Ls. Or
i=0
X(X -2)(X -3)(X —4)

Ly = - 5 , Lz=-

X(X - 1)(X6— DX -9 o X(X—23)(X—4).

—— Corollaire 49 — Description de I'’ensemble des polynémes interpolateurs
Avec les notations du théoréme 47, les polynomes @ € K[X] tels que Q(z;) = y;, pour tout ¢ € [0,n], sont

exactement les polynémes de la forme Z yili + R H(X —z;), R décrivant K[X].
i=0 i=0

Démonstration. ... [ ]

1 Polyndmes irréductibles dans C[X ] et R[X]

—— Définition 50 — Polynéme irréductible
Un polynome P de K[X] est dit irréductible (sur K) lorsqu’il est non constant et lorsque ses seuls diviseurs sont
les éléments de K* et les associés de P, autrement dit P est non constant et vérifie

VA,BeK[X], [P=AB = (degA =0ou degB =0)].

Exemple 51
e Tout polynoéme de degré 1 est irréductible, le produit de deux polyndémes non constants étant au moins de degré 2.

¢ Un polyndme irréductible dans K[X] possédant une racine a € K est de degré 1. En effet, il est divisible par le
polynéme non constant X — o qui lui est donc associé.

¢ Un polynéme qui n’admet pas de racine dans K n’est pas nécessairement irréductible dans K[X], comme le prouve
I'exemple de (X? + 1)2 dans R[X].

e En revanche un polynéome de degré 2 ou 3 qui n’a pas de racine dans K est irréductible dans K[X], puisqu'une
décomposition non triviale d’un tel polyndéme utilise nécessairement un polynéme de degré 1 qui a donc une racine.

e Un polynome de R[X] de degré 2 est donc irréductible dans R[X] si, et seulement si, son discriminant est strictement
négatif.

Remarque 52 Soit P, Q € K[X]. Si P est irréductible et si @ est non constant et divise P, alors P et () sont associés.

— Définition 53 — Factorisation irréductible

On appelle factorisation irréductible sur K d’un polynoéme non nul de K[X] toute écriture de P sous la forme
d’un produit d’un élément de K* et d’'un nombre fini de polyndémes irréductibles unitaires sur K.

Remarque 54 Nous allons voir que tout polynéme non nul de K[ X] admet une et une seule factorisation irréductible
sur K (cf. théorémes 56 et 58). Les polynomes irréductibles de anneau K[X] sont ainsi les analogues des nombres
premiers dans I’anneau Z.

1. Joseph Louis de Lagrange (1736 & Turin — 1813 & Paris) est un mathématicien, mécanicien et astronome, originaire du royaume de
Sardaigne et naturalisé frangais. A 1’age de trente ans, il quitte Turin et va séjourner & Berlin pendant vingt-et-un ans. Ensuite, il s’installe
pour ses vingt-six derniéres années & Paris ou il prend la nationalité frangaise en 1802. Fondateur du calcul des variations, avec Euler, et
de la théorie des formes quadratiques, il démontre notamment la conjecture de Bachet : tout entier positif est somme de quatre carrés.
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Factorisation irréductible dans C[X]

Les théorémes suivants sont des corollaires du théoréme de d’Alembert-Gauss.

—— Théoréme 55 — Irréductibles de C[X]
Les polynomes irréductibles de C[X] sont les polynomes de degré 1.

Démonstration. Clair d’aprés les deux premiers points de ’exemple 51. |

Théoréme 56 — Factorisation irréductible dans C[X]

Tout polynéome non constant de C[X] est scindé sur C et sa factorisation irréductible coincide avec cette forme
scindée, en particulier elle est unique & 'ordre prés des facteurs. Précisément, tout polynéme P non constant de
C[X] s’écrit

P=a][(xX—=x)™
k=1

ou les A\ sont les racines distinctes de P de multiplicités respectives my et a son coefficient dominant.

Démonstration. L'existence d’une telle factorisation découle directement du corollaire 37 et son unicité de la notion de multi-

plicité d’une racine. ™

% En pratique % Factoriser un polynéme de C[X] équivaut a déterminer ses racines dans C.

Factorisation irréductible dans R X |

—— Théoréme 57 — Irréductibles de R[X]

Les polynomes irréductibles de R[X] sont les polyndomes de degré 1 et les polynomes de degré 2 de discriminant
strictement négatif, i.e. sans racine réelle.

Démonstration. D’aprés 'exemple 51, les polyndomes de R[X] de degré 1, ou de degré 2 et de discriminant strictement négatif
sont irréductibles. Montrons qu’il s’agit des seuls.

Soit P € R[X] un polynéme irréductible. En particulier, P est non constant et admet donc une racine A € C (théoréme de
d’Alembert-Gauss).

e Si A eR, alors X — X divise P. Or P est irréductible, ainsi P et X — A sont associé et P est donc de degré 1.

e Si A ¢ R, alors X est aussi racine de P, car P est a coefficients réels (théoréme 18). Ainsi (X — A\)(X — X) divise P, or
(X = A)(X =X) = X? —2Re(V\) X + |\]* e R[X].

A nouveau, P étant irréductible, P et X% — 2Re(A\)X + \)\|2 sont associé et P est donc de degré 2 et sans racine réelle,
i.e. de discriminant strictement négatif. n

—— Théoréme 58 — Factorisation irréductible dans R[X]

La factorisation irréductible d’un polynoéme non constant P de R[X] est unique, & 'ordre prés des facteurs.
Précisément, elle est de la forme

P = an(X—)\i)mi X H(X2 +ij+Cj)nj,

i=1 j=1
avec e « le coefficient dominant de P ;
e Ai,..., A les racines réelles distinctes de P, de multiplicités respectives mq,...,m,;

e X2 +b;X + c;j des polynomes distincts et irréductibles sur R et n; € N*, pour tout j € [1,s].

Démonstration. Soit P € R[X] un polynome non constant. Puisque P est a coefficients réels, ses racines non réelles peuvent
étre regroupées par paires de conjuguées de mémes multiplicités (théoréme 18). Ainsi, P étant scindé sur C,

P=a] (X =Xx)" x [[(X —w)™ (X —w;)",
i=1 j=1
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avec « le coefficient dominant de P, A les racines réelles de P, et wy et W les racines complexes conjuguées. Or, pour tout
Jeli,s],
(X —w))(X —@;) = X* = 2Re(w;) X + |w;|*

et ce trindme a coefficients réels est de discriminant strictement négatif. Enfin cette factorisation sur R est unique, car dans le
cas contraire P aurait plusieurs formes scindées sur C, ce qui est exclu. |

% En pratique % La factorisation irréductible sur R d’un polynéme de R[X] se déduit de sa forme scindée sur C
par regroupement des racines non réelles par paires de conjuguées.

Exemple 59 — Factorisation/développement classique Pour tout 6 € R, (X —e%) (X —e™") = X2 —2cos(0) X + 1.
En particulier, le polynome X2 — 2cos(#)X + 1 est irréductible sur R lorsque 6 % 0 [r].

Exemple 60 Pour factoriser X® + 1 sur R, on commence par le factoriser sur C :
X% 1= (X - e"’*/5) (X - e3“'/5)(X +1) (X - e7”/5) (X - e"g”/S)
puis on regroupe les facteurs conjugués :
X 41=(X+ 1)((X - ei"/f’) (X - e“”f/f’)) ((X - e3”/5) (X - e””/f’))
= (X +1)(X —2c0s TX +1) (X2 - 2cos3§X + 1).

¥ ArTENTION ! ¥ En dépit des apparences (X + 1) (X2 —-3X + 2)2 n’est pas la factorisation irréductible de ce
polynéome sur R, car X? —3X +2 = (X — 1)(X — 2) (ce trinome n’est pas de discriminant strictement négatif).

PGCD et PPCM

Les énoncés de cette section sont largement analogues & ceux du chapitre Arithmétique dans Z. Certaines démons-
trations seront donc omises.

W8 PGCD de deux polyndmes, algorithme d’Euclide

Soit A et B deux polynémes dont 1'un au moins est non nul. L’ensemble {deg D | D divise A et B} est une partie
non vide (elle contient 0, car 1 divise A et B) et majorée de N (par le degré de A ou de B), il posséde donc un plus
grand élément. Ceci légitime la définition suivante.

—— Définition 61 — PGCD de deux polynémes

e Soit A et B deux polynémes dont 'un au moins est non nul. On appelle plus grand commun diviseur (ou
PGCD) de A et B tout diviseur commun de A et B de degré maximal.

e Par convention, 0 est le seul PGCD de 0 et 0, et on note 0A0 = 0.

Exemple 62 Pour tout A € K[X], les PGCD de A et 0 sont exactement les associés de A.

En effet, si A est non nul, les diviseurs communs de A et 0 sont les diviseurs de A, or les diviseurs de A de degré maximal sont
ses associés.

Le principe a la base de I'algorithme d’Euclide subsiste.

—— Théoréme 63 — Principe a la base de I'algorithme d’Euclide

Pour tous A, B, K e K[X], A+ KB et B ont les mémes diviseurs communs que A et B, et donc aussi les mémes
PGCD.

Algorithme d’Euclide L’algorithme d’Euclide s'adapte mutatis mutandis a deux polynomes de K[X] et fournit
un algorithme de calcul effectif du PGCD. Précisément, étant donnés deux polynomes A et B de K[X], définissons
une suite de polynémes Ry, par

° R0:AetR1:B;
e pour tout k € N, tant que Rg11 # 0, Rg1o est le reste de la division euclidienne de Ry par Ry.1.
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Lors de la deuxiéme étape, si Rg11 # 0, on a par construction deg Ry o < deg Rpy1. La suite des degrés des
polyndmes ainsi construite est strictement décroissante a partir du rang 1 et a valeurs dans N, il existe donc un rang
N tel que Ry # 0 et Ry41 =0, ce qui assure la terminaison de ’algorithme.

Par ailleurs, d’aprés le théoréme précédent, les diviseurs communs de A et B sont ceux de R; et Ry, puis de R5 et
Rs, ..., et enfin de Ry et Ry1, donc les diviseurs de Ry, puisque Ryy1 = 0. Ainsi les diviseurs communs de A et B
sont exactement les diviseurs de Ry et leurs PGCD sont donc les associés de Ry (cf. exemple 62). En particulier, les
PGCD de A et B sont associés.

—— Théoréme 64 — « Unicité » du PGCD de deux polynémes, lien avec les diviseurs communs
Soit A, B € K[X].

e Les PGCD de A et B sont associés. Si A ou B est non nul, un seul de ces PGCD est unitaire, on 'appelle LE
PGCD de A et B et on le note AAB.

o Les diviseurs communs de A et B sont les diviseurs de AA B.

A une constante multiplicative prés, A A B est le dernier reste non nul obtenu

Bilan : . I : . .
dans la suite des divisions successives des restes Ry, de ’algorithme d’Euclide.

Algorithme d’Euclide étendu L’algorithme d’Euclide étendu s’adapte mutatis mutandis & deux polyndémes de
K[X]. Précisément, étant donnés deux polyndomes A et B de K[X], définissons des suites de polynémes Ry, Uy et Vi

par ORQZA,U(]:letVQZO;
o R1=B,U1:OetV1:1;

e pour tout k € N, tant que Rj1 # 0, on considére Ryo et Q12 le reste et le quotient de la division
euclidienne de Ry, par Ryy1, ainsi Rgyo = Ry — Qr12Ri+1, et on pose

Ukto = Up — Qre2Uky1 et Vigo = Vi — Qri2Viet1.

Considérons le rang N tel que Ry # 0 et Ryy1 = 0 (cf. algorithme d’Euclide), une récurrence double sur & € [0, N]
permet alors d’établir la propriété
g(k‘) i« Ry = AU + BV, ».

En particulier, au rang N, AAB et Ry = AUN + BV)y sont associés, ce qui démontre le théoréme fondamental suivant.

—— Théoréme 65 — Relations de Bézout

Soit A, B € K[ X]. I existe deux polynomes U,V € K[X] tels que AU + BV = AAB. Une telle relation est appelée
UNE relation de Bézout de A et B de coefficients U et V.

¥ ArTENTION ! 8 Comme dans Z, il n’y a pas unicité des polynémes U et V.

Exemple 66 Déterminons le PGCD et une relation de Bézout des polynoémes A = 6X* + 8X3 — 7X? —5X — 2 et
B=6X%-4X?-X —1.

En effet, ANB=X —1=—(3X +1)A+ (3X? + 7X + 3) B, puisque

k Ry Qk Uk Vi A= (X+2)xB+2X%-2X
0|6X4+8X3—7X2-5X—2 1 0 e ) "
1 6X° _4X? — X 1 0 B=(3Xq+1)><(2X 72X)+XT;1
3
2
3 X-1 3X+1|-3X—-1|3X2+7X+3 91 T4

—— Théoréme 67 — Propriétés du PGCD de deux polyndmes

Soit A, B,C, K des polynémes a coefficients dans K.
(i) Associativité. (AAB)AC = AAN(BAC).

(i) Factorisation par un diviseur commun. (KA)A(KB) et K(AAB) sont associés.
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% En pratique % Si Pon connait la factorisation irréductible de deux polynomes non nuls de K[X], on peut
déterminer leur PGCD sans recourir a 'algorithme d’Euclide. Le principe est le méme que dans Z (cf. théoréme 58 du
chapitre 13).

Exemple 68 [2X (X +1)2(X + 23| A[X(X +2)*(X2+1)] = X(X +2)3.

PGCD d’une famille finie de polynémes

—— Définition-théoréme 69 — PGCD d’une famille finie de polynémes

Soit Ay, ..., A, € K[X] des polynémes dont 'un au moins est non nul.

e On appelle plus grand commun diviseur (ou PGCD) de Ay, ..., A, tout diviseur commun de Aq,..., A, de
degré maximal.

e Les PGCD de Ay, ..., A, sont associés. Un seul d’entre eux est unitaire, il est appelé LE PGCD de A4, ..., A,
et noté Ay A...AA,.

e Par convention, OA...A0 = 0.

Comme dans Z, la propriété d’associativité du PGCD, permet de ramener le calcul du PGCD d’une famille finie
de polynomes a des calculs successifs de PGCD de deux polynomes.

Exemple 70 (X3 +4X? +5X +2) A (X3 +4X2 +4X)A (X2 —4) = (X +2)A (X2 —4) = X +2.

Les résultats du paragraphe précédents s’étendent au PGCD d’une famille finie de polynémes.

—— Théoréme 71
Soit Ay, ..., A, e K[X].
e Les diviseurs communs de Aq,..., A, sont les diviseurs de A; A...AA,.
e Pour tout K € K[X], (KAj)A...A(KA,)et K(A1A...AA,) sont associés.

o Il existe des polynomes Uy, ..., U, € K[X] tels que A;A...AA,. = AUy + ...+ A.U,. Une telle relation est
appelée UNE relation de Bézout de Aq,..., A, de coefficients Uy, ..., U,.

Polynémes premiers entre eux

Définition 72 — Polyndmes premiers entre eux dans leur ensemble/deux a deux
Soit A, B, Ay,..., A, e K[X].

e A et B sont dits premiers entre eux lorsque 1 est leur seul diviseur commun unitaire, i.e. AAB = 1.

e Ai,..., A, sont dits premiers entre euzx dans leur ensemble lorsque 1 est leur seul diviseur commun unitaire,
e. Ain.. . AA. = 1.

o Ai,..., A, sont dits premiers entre euzr deux & deux lorsque A; AA; =1, pour tous 4,5 € [1,r] distincts.

¥ ArrEnTION ! B Premiers entre eux DEUX A DEUX == Premiers entre eux DANS LEUR ENSEMBLE

mais la réciproque est bien siir fausse, comme pour les entiers.

Exemple 73

e Soient a et b deux éléments distincts de K. Si p et ¢ sont deux entiers naturels, les polynomes A = (X — a)? et

B = (X —b)? sont premiers entre eux puisque les diviseurs unitaires de A sont les polynémes (X —a)¥, avec k < p,
et que parmi eux seul 1 divise B.
e Pour (ay,as,...,a,) € KP, le polynéme A = (X —a3)(X —ag)...(X — ap) est premier avec tout polynéme n’ad-

mettant aucun a; pour racine. En effet, les diviseurs unitaires de A sont les polynomes de la forme [ [,_;(X — a;),
avec I < [1,p], et aucun d’eux hormis 1 ne divise B, puisque A et B n’ont pas de racine commune.

e En particulier, deux polynomes de C[X] sont premiers entre eux si et seulement s’ils n’ont pas de racine commune.
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Théoréme 74 — Théorémes de Bézout et Gauss, conséquences
Soit A,B,C, P, Ay,..., A, e K[X].
e Théoréme de Bézout. Les assertions suivantes sont équivalentes :
(i) AAB=1 (ii) Il existe deux polynomes U,V € K[X] tels que AU + BV = 1.
e Théoréme de Gauss. Si A| BCet AnB =1,alors A|C.
e Lemme d’Euclide. Pour tout P € K[X] IRREDUCTIBLE, P|AB <= P|AouP|B.
e Produits de polynomes.

x Si chacun des polynomes Ay, ..., A, est premier avec P, alors leur produit A; --- A, l'est aussi.
x Si Ay,..., A, divisent P et sont premiers entre eux DEUX A DEUX, alors leur produit A; --- A, divise P.

Exemple 75 On peut ainsi retrouver plus rapidement des résultats déja connus.

e Sia,be K sont distincts, alors les polynémes X — a et X — b sont premiers entre eux, comme le prouve 'identité

de Bézout )If:; + if_’lf’ = 1. On en déduit, pour tous p,q € N2, que (X — a)P et (X — b)? sont premiers entre eux.

e Soit A un polynéme admettant aq, v, ..., o pour racines distinctes d’ordres respectifs r1,r2, ..., 7p.
Par définition, les polynémes (X — ;)" divisent A et, comme ils sont premiers entre eux deux a deux, leur produit
divise A (comme nous 'avions établi au théoréme 23).

—— Corollaire 76 — Caractérisation de la divisibilité dans C[X]

,

Soit A, B € C[X] et « H(X — Ar)™* la factorisation irréductible de A, les \j étant distincts. Le polynome A
k=1

divise B si et seulement si, pour tout ¢ € [1,7], \; est racine de B de multiplicité supérieure ou égale & m;.

PPCM de deux polynémes

—— Définition-théoréme 77 — PPCM de deux polynémes, lien avec le PGCD

Soit A, B € K[X] non nuls. On appelle plus petit commun multiple (ou PPCM) de A et B tout multiple commun
non nul de A et B de degré minimal.

e Existence et unicité. A et B possédent un unique PPCM unitaire appelé LE PPCM de A et B, noté AvB.
Leurs autres PPCM sont les associés de Av B.

e Multiples communs et multiples du PPCM. Les multiples communs de A et B sont les multiples de
Av B, autrement dit AK[X] n BK[X] = (Av B)K[X].
o Lien avec le PGCD. Les polynomes AB et (AA B)(Av B) sont associés.

% En pratique % Si 'on connait la factorisation irréductible de deux polynémes non nuls de K[X], on peut
déterminer leur PPCM sans calculer au préalable leur PGCD. Le principe est le méme que dans Z (cf. théoréme 58
du chapitre 13).

Exemple 78 [2X(X + 1)%(X + 2)®]v [X(X +2)*(X2 +1)] = X (X + 1)2(X +2)* (X2 +1).

Quelques résultats classiques :
o Racines rationnelles d’un polynome a coefficients entiers (exemple 11).
e Reste de la division euclidienne de X* par X™ — 1 (exercice 7).
e Théoréme des deux carrés dans R[X] (exercice 48).

(XM —DA(X™—1) = X™n" — 1 (exercice 50).

Polynomes P tels que P’ | P (exercice 54).
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Compétences a acqueérir

e Calculer le reste d’une division euclidienne : exercices 4, 5 et 7 4 9.

e Montrer qu’'un polynéme est multiple d’un autre (via la division euclidienne) : exercices 2, 3 et 6.

e Déterminer la multiplicité d’une racine : exercices 10 et 16

e Montrer qu’'un polynéme est multiple d’un autre (via la multiplicité des racines) : exercices 11 a 15.
e Utiliser la rigidité : exercices 19 a 24.

e Utiliser les formules de Viéte : exercices 25 a 32.

e Utiliser les polyndémes interpolateurs de Lagrange : exercices 33 a 36.

e Déterminer la factorisation irréductible sur R ou C d’un polyndme : exercices 38 a 43.

e Calculer le PGCD de deux polynémes : exercices 49 et 50.

Annexe

Démonstration du théoréme 36.
Soit P un polynéme a coefficients complexes de degré p > 0. Pour montrer que P posséde une racine complexe, considérons
o = ing |P(2)|, qui existe puisque {|P(z)|| z € C} est une partie non vide de Ry, et montrons que cette borne inférieure est
ZE€!

atteinte, puis qu’elle est nulle.

P
Etape 1 - L’inf est atteint. Posons P = Z arX* avec ap # 0, alors, pour tout z € C avec r = |z|,
k=0

|P(2)] = lapz"| —

p—1

k
S s
k=0

d’aprés I'inégalité triangulaire. Ce minorant définit une fonction polynomiale réelle en la variable r, qui tend vers +00 quand r
tend vers +o0 (régle du plus haut degré). Elle est donc plus grande que o + 1 au voisinage de +00, ce qui prouve qu'il existe un
disque D centré en 0 en dehors duquel on a |P(z)| > a + 1.

Puisque o = il;(f;lp(z)‘, on peut trouver une suite de complexes (ur)

p—1
> Jap|r? — ) |axlr",
k=0

ney telle que HEIEOO\P(unM = a. Cette suite est donc,

a partir d'un certain rang, dans le disque D, et par suite elle est bornée. On peut donc en extraire une sous-suite (uw(n))
convergeant vers un complexe zo (théoréme de Bolzano-Weierstrass). Comme

neN

p
Plugm) = Y, artin),
k=0

sduit Lim P _p .
on en déduit lim (uw(n)) (20), ce qui donne

a= lim ’P(uq,(n)” = |P(z0)|.

n—+0o0

Etape 2 - a = 0. Montrons par ’absurde que P(z0) = 0 en supposant « > 0.
Plzo + X)

P(z0)

P
P=1—-a,X"+ Z ar X" avecaqg #0 et 1 <q<p.
k=qg+1

Quitte & considérer le polynome , on peut supposer @ = 1 et zg = 0. Le polynéme non constant P s’écrit donc

Posons a, = pe™ " avec p e R* et 6 € R. Pour z = ret/4 avec r >0, on a
P .
Piz)y=1—pr?+ Z aprt et/
k=qg+1

d’ou »
P <1=prf|+ ) laxlr".
k=q+1

Si l'on suppose 7 < ¢/1/p, on a |1 — pr?| =1 — pr? et donc

p
[P()| =1< —pr®+ > |axlr®

k=qg+1

soit, sachant r > 0,
|P(z)] — 1

P
k—
g STet Z |ax|r qT—_>(>)—p<0.

k=qg+1
P
Ainsi, le majorant —pr? + Z lag|r® de |P(2)| — 1 est strictement négatif au voisinage de 0. Par conséquent, il existe z € C tel

k=qg+1
que |P(z)| < 1 = a, ce qui est contradictoire.
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